478478$$
479479```
480480
481- We can see the Neumann series lemma in action in the following example.
481+ We can see the Neumann Series Lemma in action in the following example.
482482
483483``` {code-cell} ipython3
484484A = np.array([[0.4, 0.1],
@@ -492,7 +492,7 @@ print(r)
492492
493493The spectral radius $r(A)$ obtained is less than 1.
494494
495- Thus, we can apply the Neumann Series lemma to find $(I-A)^{-1}$.
495+ Thus, we can apply the Neumann Series Lemma to find $(I-A)^{-1}$.
496496
497497``` {code-cell} ipython3
498498I = np.identity(2) #2 x 2 identity matrix
@@ -518,7 +518,7 @@ np.allclose(A_sum, B_inverse)
518518```
519519
520520Although we truncate the infinite sum at $k = 50$, both methods give us the same
521- result which illustrates the result of the Neumann Series lemma .
521+ result which illustrates the result of the Neumann Series Lemma .
522522
523523## Exercises
524524
@@ -583,7 +583,7 @@ The solution $x^{*}$ is given by the equation $x^{*} = (I-A)^{-1} d$
583583
5845841 . Since $A$ is a nonnegative irreducible matrix, find the Perron-Frobenius eigenvalue of $A$.
585585
586- 2 . Use the Neumann Series lemma to find the solution $x^{* }$ if it exists.
586+ 2 . Use the Neumann Series Lemma to find the solution $x^{* }$ if it exists.
587587
588588``` {exercise-end}
589589```
@@ -603,7 +603,7 @@ r = max(abs(λ) for λ in evals) #dominant eigenvalue/spectral radius
603603print(r)
604604```
605605
606- Since we have $r(A) < 1$ we can thus find the solution using the Neumann Series lemma .
606+ Since we have $r(A) < 1$ we can thus find the solution using the Neumann Series Lemma .
607607
608608``` {code-cell} ipython3
609609I = np.identity(3)
0 commit comments