@@ -4,7 +4,7 @@ jupytext:
44 extension : .md
55 format_name : myst
66 format_version : 0.13
7- jupytext_version : 1.14.1
7+ jupytext_version : 1.14.5
88kernelspec :
99 display_name : Python 3 (ipykernel)
1010 language : python
@@ -145,7 +145,7 @@ households own just over 40\% of total wealth.
145145---
146146mystnb:
147147 figure:
148- caption: Lorenz curve of simulated data
148+ caption: " Lorenz curve of simulated data"
149149 name: lorenz_simulated
150150---
151151n = 2000
@@ -551,7 +551,7 @@ The following code uses the data from dataframe ``df_income_wealth`` to generate
551551
552552# transfer the survey weights from absolute into relative values
553553df1 = df_income_wealth
554- df2 = df1.groupby('year').sum().reset_index() # group
554+ df2 = df1.groupby('year').sum(numeric_only=True ).reset_index() # group
555555df3 = df2[['year', 'weights']]
556556df3.columns = 'year', 'r_weights'
557557df4 = pd.merge(df3, df1, how="left", on=["year"])
@@ -570,9 +570,9 @@ df7 = df4[df4['ti_groups'] == 'Top 10%']
570570
571571# calculate the sum of weighted top 10% by net wealth, total income and labor income.
572572
573- df5 = df4.groupby('year').sum().reset_index()
574- df8 = df6.groupby('year').sum().reset_index()
575- df9 = df7.groupby('year').sum().reset_index()
573+ df5 = df4.groupby('year').sum(numeric_only=True ).reset_index()
574+ df8 = df6.groupby('year').sum(numeric_only=True ).reset_index()
575+ df9 = df7.groupby('year').sum(numeric_only=True ).reset_index()
576576
577577df5['weighted_n_wealth_top10'] = df8['weighted_n_wealth']
578578df5['weighted_t_income_top10'] = df9['weighted_t_income']
0 commit comments