Skip to content

Commit 3b87c01

Browse files
Tom's non-edit of cagan_ree
1 parent 78a3bea commit 3b87c01

File tree

1 file changed

+1
-11
lines changed

1 file changed

+1
-11
lines changed

lectures/long_run_growth.md

Lines changed: 1 addition & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ jupytext:
44
extension: .md
55
format_name: myst
66
format_version: 0.13
7-
jupytext_version: 1.14.5
7+
jupytext_version: 1.14.4
88
kernelspec:
99
display_name: Python 3 (ipykernel)
1010
language: python
@@ -40,7 +40,6 @@ import numpy as np
4040
from matplotlib.lines import Line2D
4141
```
4242

43-
4443
A project initiated by [Angus Maddison](https://en.wikipedia.org/wiki/Angus_Maddison) has collected many historical time series that study economic growth.
4544

4645
We can use the [Maddison Historical Statistics](https://www.rug.nl/ggdc/historicaldevelopment/maddison/) to look at many different countries, including some countries dating back to the first century.
@@ -230,7 +229,6 @@ data['gdp'] = data['gdppc'] * data['pop']
230229
gdp = data['gdp'].unstack('countrycode')
231230
```
232231

233-
234232
### Early Industralization (1820 to 1940)
235233

236234

@@ -356,7 +354,6 @@ ax.legend(handles=legend_elements, loc='lower center', ncol=3, bbox_to_anchor=[0
356354
plt.show()
357355
```
358356

359-
360357
## Other Interesting Plots
361358

362359
Here are a collection of interesting plots that could be linked to interesting stories
@@ -369,7 +366,6 @@ gdppc['CHN'].loc[1500:1980].interpolate().plot(ax=fig.gca())
369366
plt.show()
370367
```
371368

372-
373369
China (CHN) then followed a very similar growth story from the 1980s through to current day China.
374370

375371
```{code-cell} ipython3
@@ -378,7 +374,6 @@ gdppc[['CHN', 'GBR']].interpolate().plot(ax = fig.gca())
378374
plt.show()
379375
```
380376

381-
382377
## Regional Analysis
383378

384379
The [Maddison Historical Statistics](https://www.rug.nl/ggdc/historicaldevelopment/maddison/) dataset also includes regional aggregations
@@ -388,22 +383,19 @@ data = pd.read_excel("datasets/mpd2020.xlsx", sheet_name='Regional data', header
388383
data.columns = data.columns.droplevel(level=2)
389384
```
390385

391-
392386
We can save the raw data in a more convenient format to build a single table of regional GDP per capita
393387

394388
```{code-cell} ipython3
395389
regionalgdppc = data['gdppc_2011'].copy()
396390
regionalgdppc.index = pd.to_datetime(regionalgdppc.index, format='%Y')
397391
```
398392

399-
400393
Let us interpolate based on time to fill in any gaps in the dataset for the purpose of plotting
401394

402395
```{code-cell} ipython3
403396
regionalgdppc.interpolate(method='time', inplace=True)
404397
```
405398

406-
407399
and record a dataset of world GDP per capita
408400

409401
```{code-cell} ipython3
@@ -421,7 +413,6 @@ ax = worldgdppc.plot(
421413
)
422414
```
423415

424-
425416
Looking more closely, let us compare the time series for `Western Offshoots` and `Sub-Saharan Africa`
426417

427418
```{code-cell} ipython3
@@ -432,7 +423,6 @@ ax.legend(loc='lower center', ncol=2, bbox_to_anchor=[0.5, -0.26])
432423
plt.show()
433424
```
434425

435-
436426
and more broadly at a number of different regions around the world
437427

438428
```{code-cell} ipython3

0 commit comments

Comments
 (0)