Skip to content

Commit 37dd60c

Browse files
Tom's second edits of March 20 -- input-output lecture
1 parent 4b0fb8d commit 37dd60c

File tree

1 file changed

+25
-7
lines changed

1 file changed

+25
-7
lines changed

lectures/input_output.md

Lines changed: 25 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ We let
3131
* $x_{ij} $ be the quantity of good $i$ allocated to be an input to producing good $j$ for $i=1, \ldots n$, $j = 1, \ldots n$
3232
* $x_{0j}$ be the quantity of labor allocated to produce one unit of good $j$.
3333
* $a_{ij}$ be the number of units of good $i$ required to produce one unit of good $j$, $i=0, \ldots, n, j= 1, \ldots n$.
34-
* $w >0$ be the exogenous wage of labor, denominated in dollars per unit of labor
34+
* $w >0$ be an exogenous wage of labor, denominated in dollars per unit of labor
3535
* $p$ be an $n \times 1$ vector of prices of produced goods $i = 1, \ldots , n$.
3636

3737

@@ -182,14 +182,8 @@ $$
182182
183183
where $^*$'s denote optimal choices for the primal and dual problems.
184184
185-
186-
187-
188-
189-
190185
+++
191186
192-
193187
## Exercise
194188
195189
{cite}`DoSSo`, chapter 9, carries along an example with the following
@@ -218,6 +212,30 @@ $$
218212
X = 50
219213
$$
220214
215+
{cite}`DoSSo`, chapter 9, describe how they infer the input-output coefficients in $a$ and $a0$ from the following hypothetical underlying "data" on agricultural and manufacturing industries:
216+
217+
$$
218+
X = \begin{bmatrix} 25 & 175 \cr
219+
40 & 20 \end{bmatrix}
220+
$$
221+
222+
$$
223+
C = \begin{bmatrix} 50 \cr 60 \end{bmatrix}
224+
$$
225+
226+
and
227+
228+
$$
229+
L = \begin{bmatrix} 10 & 40 \end{bmatrix}
230+
$$
231+
232+
where $L$ is a vector of labor services used in each industry.
233+
234+
235+
236+
237+
238+
221239
222240
```{code-cell} ipython3
223241

0 commit comments

Comments
 (0)