Skip to content

Commit 2b17d05

Browse files
committed
fix syntax for tags
1 parent 4dffab1 commit 2b17d05

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

lectures/networks.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -79,6 +79,7 @@ The following figure shows international trade in large commercial aircraft in 2
7979

8080
```{code-cell} ipython3
8181
---
82+
tags: ["hide_input"]
8283
mystnb:
8384
figure:
8485
caption: "Commercial Aircraft Network \n"
@@ -88,7 +89,6 @@ mystnb:
8889
classes: shadow bg-primary
8990
width: 200px
9091
---
91-
:tags: [hide_input]
9292
9393
import matplotlib.cm as cm
9494
import quantecon_book_networks
@@ -171,7 +171,7 @@ where the states are
171171
Let's examine the following figure.
172172

173173
```{code-cell} ipython3
174-
:tags: [hide_input]
174+
:tags: ["hide_input"]
175175
from graphviz import Digraph
176176
177177
dot = Digraph(comment='Graph')
@@ -473,6 +473,7 @@ loans) between private banks, grouped by country of origin.
473473

474474
```{code-cell} ipython3
475475
---
476+
tags: ["hide_cell"]
476477
mystnb:
477478
figure:
478479
caption: "International Credit Network \n"
@@ -482,7 +483,6 @@ mystnb:
482483
classes: shadow bg-primary
483484
width: 200px
484485
---
485-
:tags: [hide_cell]
486486
487487
Z = ch1_data["adjacency_matrix_2019"]["Z"]
488488
Z_visual= ch1_data["adjacency_matrix_2019"]["Z_visual"]
@@ -583,6 +583,7 @@ representing edges of the induced directed graph.
583583

584584
```{code-cell} ipython3
585585
---
586+
tags: ["hide_input"]
586587
mystnb:
587588
figure:
588589
caption: "Weighted Poverty Trap \n"
@@ -592,7 +593,6 @@ mystnb:
592593
classes: shadow bg-primary
593594
width: 200px
594595
---
595-
:tags: [hide_input]
596596
597597
graph3 = Digraph(comment='Graph')
598598
@@ -896,7 +896,7 @@ A = np.array([[0,0.7,0.3], #adjacency matrix A
896896
```
897897

898898
```{code-cell} ipython3
899-
:tags: [hide_cell]
899+
:tags: ["hide_cell"]
900900
def is_irreducible(P):
901901
n = len(P)
902902
result = np.zeros((n, n))

0 commit comments

Comments
 (0)