@@ -128,27 +128,27 @@ fig, ax = plt.subplots(figsize=(10, 10))
128128ax.axis('off')
129129
130130nx.draw_networkx_nodes(DG,
131- node_pos_dict,
132- node_color=node_colors,
133- node_size=node_sizes,
134- linewidths=2,
135- alpha=0.6,
136- ax=ax)
131+ node_pos_dict,
132+ node_color=node_colors,
133+ node_size=node_sizes,
134+ linewidths=2,
135+ alpha=0.6,
136+ ax=ax)
137137
138138nx.draw_networkx_labels(DG,
139139 node_pos_dict,
140140 ax=ax)
141141
142142nx.draw_networkx_edges(DG,
143- node_pos_dict,
144- edge_color=edge_colors,
145- width=edge_widths,
146- arrows=True,
147- arrowsize=20,
148- ax=ax,
149- arrowstyle='->',
150- node_size=node_sizes,
151- connectionstyle='arc3,rad=0.15')
143+ node_pos_dict,
144+ edge_color=edge_colors,
145+ width=edge_widths,
146+ arrows=True,
147+ arrowsize=20,
148+ ax=ax,
149+ arrowstyle='->',
150+ node_size=node_sizes,
151+ connectionstyle='arc3,rad=0.15')
152152
153153plt.show()
154154```
@@ -275,9 +275,9 @@ mystnb:
275275---
276276graph1 = graphviz.Digraph(comment='Graph',engine = "neato")
277277graph1.attr(rankdir='LR')
278- graph1.node("poor", pos = '0,0!')
279- graph1.node("middle class", pos = '2,1!')
280- graph1.node("rich", pos = '4,0!')
278+ graph1.node("poor", pos= '0,0!')
279+ graph1.node("middle class", pos= '2,1!')
280+ graph1.node("rich", pos= '4,0!')
281281
282282graph1.edge("poor", "poor")
283283graph1.edge("poor", "middle class")
@@ -306,9 +306,9 @@ mystnb:
306306---
307307graph2 = graphviz.Digraph(comment='Graph',engine="neato")
308308graph2.attr(rankdir='LR')
309- graph2.node("poor", pos = '0,0!')
310- graph2.node("middle class", pos = '2,1!')
311- graph2.node("rich", pos = '4,0!')
309+ graph2.node("poor", pos= '0,0!')
310+ graph2.node("middle class", pos= '2,1!')
311+ graph2.node("rich", po = '4,0!')
312312
313313graph2.edge("poor", "poor")
314314graph2.edge("middle class", "poor")
@@ -512,30 +512,30 @@ fig, ax = plt.subplots(figsize=(8, 10))
512512ax.axis('off')
513513
514514nx.draw_networkx_nodes(G,
515- node_pos_dict,
516- node_color=node_colors,
517- node_size=node_sizes,
518- edgecolors='grey',
519- linewidths=2,
520- alpha=0.4,
521- ax=ax)
515+ node_pos_dict,
516+ node_color=node_colors,
517+ node_size=node_sizes,
518+ edgecolors='grey',
519+ linewidths=2,
520+ alpha=0.4,
521+ ax=ax)
522522
523523nx.draw_networkx_labels(G,
524524 node_pos_dict,
525525 font_size=12,
526526 ax=ax)
527527
528528nx.draw_networkx_edges(G,
529- node_pos_dict,
530- edge_color=edge_colors,
531- width=edge_widths,
532- arrows=True,
533- arrowsize=20,
534- alpha=0.8,
535- ax=ax,
536- arrowstyle='->',
537- node_size=node_sizes,
538- connectionstyle='arc3,rad=0.15')
529+ node_pos_dict,
530+ edge_color=edge_colors,
531+ width=edge_widths,
532+ arrows=True,
533+ arrowsize=20,
534+ alpha=0.8,
535+ ax=ax,
536+ arrowstyle='->',
537+ node_size=node_sizes,
538+ connectionstyle='arc3,rad=0.15')
539539
540540plt.show()
541541```
@@ -603,14 +603,14 @@ graph3.node("poor")
603603graph3.node("middle class")
604604graph3.node("rich")
605605
606- graph3.edge("poor", "poor", label = '0.9')
607- graph3.edge("poor", "middle class", label = '0.1')
608- graph3.edge("middle class", "poor", label = '0.4')
609- graph3.edge("middle class", "middle class", label = '0.4')
610- graph3.edge("middle class", "rich", label = '0.2')
611- graph3.edge("rich", "poor", label = '0.1')
612- graph3.edge("rich", "middle class", label = '0.1')
613- graph3.edge("rich", "rich", label = '0.8')
606+ graph3.edge("poor", "poor", label= '0.9')
607+ graph3.edge("poor", "middle class", label= '0.1')
608+ graph3.edge("middle class", "poor", label= '0.4')
609+ graph3.edge("middle class", "middle class", label= '0.4')
610+ graph3.edge("middle class", "rich", label= '0.2')
611+ graph3.edge("rich", "poor", label= '0.1')
612+ graph3.edge("rich", "middle class", label= '0.1')
613+ graph3.edge("rich", "rich", label= '0.8')
614614
615615graph3
616616```
@@ -707,21 +707,21 @@ plt.show()
707707graph4 = graphviz.Digraph(engine = "neato")
708708
709709graph4.attr(rankdir='LR')
710- graph4.node('1', pos = '1,0!')
711- graph4.node('2', pos = '3,0!')
712- graph4.node('3', pos = '4,2!')
713- graph4.node('4', pos = '2,3!')
714- graph4.node('5', pos = '0,2!')
715-
716- graph4.edge('1','2', label = '100')
717- graph4.edge('2','1', label = '50')
718- graph4.edge('2','3', label = '200')
719- graph4.edge('3','4', label = '\t100')
720- graph4.edge('4','2', label = '500')
721- graph4.edge('4','5', label = '\n50\t')
722- graph4.edge('5','1', label = '150')
723- graph4.edge('5','3', label = '250')
724- graph4.edge('5','4', label = '300')
710+ graph4.node('1', pos= '1,0!')
711+ graph4.node('2', pos= '3,0!')
712+ graph4.node('3', pos= '4,2!')
713+ graph4.node('4', pos= '2,3!')
714+ graph4.node('5', pos= '0,2!')
715+
716+ graph4.edge('1','2', label= '100')
717+ graph4.edge('2','1', label= '50')
718+ graph4.edge('2','3', label= '200')
719+ graph4.edge('3','4', label= '\t100')
720+ graph4.edge('4','2', label= '500')
721+ graph4.edge('4','5', label= '\n50\t')
722+ graph4.edge('5','1', label= '150')
723+ graph4.edge('5','3', label= '250')
724+ graph4.edge('5','4', label= '300')
725725
726726graph4
727727```
@@ -786,21 +786,21 @@ plt.show()
786786graph5 = graphviz.Digraph(engine = "neato")
787787
788788graph5.attr(rankdir='LR')
789- graph5.node('1', pos = '1,0!')
790- graph5.node('2', pos = '3,0!')
791- graph5.node('3', pos = '4,2!')
792- graph5.node('4', pos = '2,3!')
793- graph5.node('5', pos = '0,2!')
794-
795- graph5.edge('1','2', label = '50')
796- graph5.edge('1','5', label = '150')
797- graph5.edge('2','1', label = '100')
798- graph5.edge('2','4', label = '500')
799- graph5.edge('3','2', label = '200')
800- graph5.edge('3','5', label = '250')
801- graph5.edge('4','3', label = '\t100')
802- graph5.edge('4','5', label = '\n300\t')
803- graph5.edge('5','4', label = '50')
789+ graph5.node('1', pos= '1,0!')
790+ graph5.node('2', pos= '3,0!')
791+ graph5.node('3', pos= '4,2!')
792+ graph5.node('4', pos= '2,3!')
793+ graph5.node('5', pos= '0,2!')
794+
795+ graph5.edge('1', '2', label= '50')
796+ graph5.edge('1', '5', label= '150')
797+ graph5.edge('2', '1', label= '100')
798+ graph5.edge('2', '4', label= '500')
799+ graph5.edge('3', '2', label= '200')
800+ graph5.edge('3', '5', label= '250')
801+ graph5.edge('4', '3', label= '\t100')
802+ graph5.edge('4', '5', label= '\n300\t')
803+ graph5.edge('5', '4', label= '50')
804804
805805graph5
806806```
845845The above result is obvious when $k=1$ and a proof of the general case can be
846846found in \cite{sargent2022economic}.
847847
848- Now recall from {ref} ` the eigenvalues lecture <irreducible> ` that a
849- nonnegative matrix $A$ is called irreducible if for each $(i,j)$ there is an integer $k \geq 0$ such that $a^{k}_ {ij} > 0$.
848+ Now recall from the eigenvalues lecture that a
849+ nonnegative matrix $A$ is called {ref} ` irreducible<irreducible> ` if for each $(i,j)$ there is an integer $k \geq 0$ such that $a^{k}_ {ij} > 0$.
850850
851851From the preceding theorem it is not too difficult (see
852852\cite{sargent2022economic} for details) to get the next result.
@@ -875,11 +875,11 @@ graph6.node('1')
875875graph6.node('2')
876876graph6.node('3')
877877
878- graph6.edge('1','2', label = '0.7')
879- graph6.edge('1','3', label = '0.3')
880- graph6.edge('2','1', label = '1')
881- graph6.edge('3','1', label = '0.4')
882- graph6.edge('3','2', label = '0.6')
878+ graph6.edge('1', '2', label= '0.7')
879+ graph6.edge('1', '3', label= '0.3')
880+ graph6.edge('2', '1', label= '1')
881+ graph6.edge('3', '1', label= '0.4')
882+ graph6.edge('3', '2', label= '0.6')
883883
884884graph6
885885```
@@ -1072,7 +1072,7 @@ Suppose we have a weighted directed graph with adjacency matrix $A$.
10721072For simplicity we will suppose that the nodes $V$ of the graph are just the
10731073integers $1, \ldots, n$.
10741074
1075- Let $r(A)$ denote the {ref}` spectral radius<la_neumann > ` of $A$.
1075+ Let $r(A)$ denote the {ref}` spectral radius<neumann_series_lemma > ` of $A$.
10761076
10771077The ** eigenvector centrality** of the graph is defined as the $n$-vector $e$ that solves
10781078
@@ -1084,8 +1084,7 @@ The **eigenvector centrality** of the graph is defined as the $n$-vector $e$ tha
10841084```
10851085
10861086In other words, $e$ is the dominant eigenvector of $A$ (the eigenvector of the
1087- largest eigenvalue --- see the discussion of the Perron-Frobenius theorem in
1088- {ref}` the eigenvalue lecture <perron-frobe> `
1087+ largest eigenvalue --- see the discussion of the {ref}` Perron-Frobenius theorem<perron-frobe> ` in the eigenvalue lecture.
10891088
10901089To better understand {eq}` ev_central ` , we write out the full expression
10911090for some element $e_i$
12291228$$
12301229
12311230
1232- This follows from the {ref}` Neumann series theorem<la_neumann > ` .
1231+ This follows from the {ref}` Neumann series theorem<neumann_series_lemma > ` .
12331232
12341233The parameter $\beta$ is used to ensure that $\kappa$ is finite
12351234
0 commit comments