@@ -155,74 +155,43 @@ Check that your answers agree with `u.mean()` and `u.var()`.
155155
156156#### Bernoulli distribution
157157
158- Another useful (and more interesting) distribution is the Bernoulli distribution
158+ Another useful distribution is the Bernoulli distribution on $S = \{ 0,1 \} $, which has PMF:
159159
160- We can import the uniform distribution on $S = \{ 1, \ldots, n\} $ from SciPy like so:
161-
162- ``` {code-cell} ipython3
163- n = 10
164- u = scipy.stats.randint(1, n+1)
165- ```
160+ $$
161+ p(x_i)=
162+ \begin{cases}
163+ p & \text{if $x_i = 1$}\\
164+ 1-p & \text{if $x_i = 0$}
165+ \end{cases}
166+ $$
166167
168+ Here $x_i \in S$ is the outcome of the random variable.
167169
168- Here's the mean and variance
170+ We can import the Bernoulli distribution on $S = \{ 0,1 \} $ from SciPy like so:
169171
170172``` {code-cell} ipython3
171- u.mean(), u.var()
173+ p = 0.4
174+ u = scipy.stats.bernoulli(p)
172175```
173176
174- The formula for the mean is $(n+1)/2$, and the formula for the variance is $(n^2 - 1)/12$.
175-
176177
177- Now let 's evaluate the PMF
178+ Here 's the mean and variance:
178179
179180``` {code-cell} ipython3
180- u.pmf(1 )
181+ u.mean(), u.var( )
181182```
182183
183- ``` {code-cell} ipython3
184- u.pmf(2)
185- ```
184+ The formula for the mean is $p$, and the formula for the variance is $p(1-p)$.
186185
187186
188- Here 's a plot of the probability mass function :
187+ Now let 's evaluate the PMF :
189188
190189``` {code-cell} ipython3
191- fig, ax = plt.subplots()
192- S = np.arange(1, n+1)
193- ax.plot(S, u.pmf(S), linestyle='', marker='o', alpha=0.8, ms=4)
194- ax.vlines(S, 0, u.pmf(S), lw=0.2)
195- ax.set_xticks(S)
196- plt.show()
197- ```
198-
199-
200- Here's a plot of the CDF:
201-
202- ``` {code-cell} ipython3
203- fig, ax = plt.subplots()
204- S = np.arange(1, n+1)
205- ax.step(S, u.cdf(S))
206- ax.vlines(S, 0, u.cdf(S), lw=0.2)
207- ax.set_xticks(S)
208- plt.show()
209- ```
210-
211-
212- The CDF jumps up by $p(x_i)$ and $x_i$.
213-
214-
215- ``` {exercise}
216- :label: prob_ex2
217-
218- Calculate the mean and variance for this parameterization (i.e., $n=10$)
219- directly from the PMF, using the expressions given above.
220-
221- Check that your answers agree with `u.mean()` and `u.var()`.
190+ u.pmf(0)
191+ u.pmf(1)
222192```
223193
224194
225-
226195#### Binomial distribution
227196
228197Another useful (and more interesting) distribution is the ** binomial distribution** on $S=\{ 0, \ldots, n\} $, which has PMF
0 commit comments