@@ -120,7 +120,7 @@ def linprog_simplex(c, A_ub=np.empty((0, 0)), b_ub=np.empty((0,)),
120120
121121 References
122122 ----------
123- * K. C. Border, "The Gauss–Jordan and Simplex Algorithms, " 2004.
123+ * K. C. Border, "The Gauss–Jordan and Simplex Algorithms" 2004.
124124
125125 """
126126 n , m , k = c .shape [0 ], A_ub .shape [0 ], A_eq .shape [0 ]
@@ -208,8 +208,8 @@ def _initialize_tableau(A_ub, b_ub, A_eq, b_eq, tableau, basis):
208208 A_eq @ x == b_eq
209209 x, s >= 0
210210
211- Then, let (z1, z2) be a vector of artificial variables for Phase 1:
212- we solve the following LP:
211+ Then, let (z1, z2) be a vector of artificial variables for Phase 1.
212+ We solve the following LP:
213213
214214 maximize::
215215
@@ -453,7 +453,7 @@ def _pivot_col(tableau, skip_aux, piv_options):
453453 -------
454454 found : bool
455455 True iff there is a positive element in the last row of the
456- tableau (and then pivotting should be conducted).
456+ tableau (and then pivoting should be conducted).
457457
458458 pivcol : int
459459 The index of column containing the pivot element. (-1 if `found
@@ -489,8 +489,7 @@ def get_solution(tableau, basis, x, lambd, b_signs):
489489 where L=m+k.
490490
491491 basis : ndarray(int, ndim=1)
492- Empty ndarray of shape (L,) to store the basic variables.
493- Modified in place.
492+ ndarray of shape (L,) containing the optimal basis.
494493
495494 x : ndarray(float, ndim=1)
496495 Empty ndarray of shape (n,) to store the primal solution.
0 commit comments