Skip to content

Commit 5c00566

Browse files
author
Donglai Wei
committed
add cellmap challenge
1 parent e198fb8 commit 5c00566

37 files changed

+6970
-2288
lines changed

NNUNET_INTEGRATION_DESIGN.md

Lines changed: 1130 additions & 0 deletions
Large diffs are not rendered by default.

NNUNET_INTEGRATION_SUMMARY.md

Lines changed: 283 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,283 @@
1+
# nnUNet Integration: Executive Summary
2+
3+
## 🎯 Objective
4+
5+
Integrate pre-trained nnUNet v2 models (specifically `/projects/weilab/liupeng/mito_2d_semantic_model/`) into PyTorch Connectomics v2.0 for **large-scale, production-grade inference** on TB-scale EM datasets.
6+
7+
---
8+
9+
## 📊 Current State Analysis
10+
11+
### nnUNet Model (Source)
12+
- **Location**: `/projects/weilab/liupeng/mito_2d_semantic_model/`
13+
- **Type**: 2D semantic segmentation (mitochondria)
14+
- **Size**: 270 MB checkpoint
15+
- **Performance**: File-based batch inference with TTA
16+
- **Limitations**: ❌ No memory-efficient volumetric processing, ❌ No distributed inference
17+
18+
### PyTC v1 Legacy (`test_singly`)
19+
- **Features**: ✅ Volume-by-volume processing, ✅ TensorStore support, ✅ Resume capability
20+
- **Limitations**: ❌ YACS config (deprecated), ❌ No nnUNet support
21+
22+
### PyTC v2.0 Current
23+
- **Features**: ✅ Lightning-based, ✅ MONAI sliding window, ✅ TTA, ✅ Post-processing
24+
- **Limitations**: ❌ No nnUNet model loader, ❌ No volume-by-volume mode
25+
26+
---
27+
28+
## 🏗️ Proposed Solution
29+
30+
### Architecture Overview
31+
32+
```
33+
Input Files → Volume Processor → nnUNet Wrapper → MONAI Sliding Window
34+
35+
TTA Ensemble
36+
37+
Post-Processing
38+
39+
Instance Segmentation
40+
41+
HDF5/TIFF Output
42+
```
43+
44+
### Core Components
45+
46+
1. **nnUNet Model Wrapper** (`connectomics/models/arch/nnunet_models.py`)
47+
- Direct checkpoint loading (no temp files)
48+
- Compatible with PyTC architecture registry
49+
- Auto-detects plans.json and dataset.json
50+
51+
2. **Volume Processor** (`connectomics/lightning/inference.py`)
52+
- Process files one-by-one (memory-efficient)
53+
- Resume capability (skip existing outputs)
54+
- Progress tracking and error recovery
55+
56+
3. **Hydra Configuration** (`tutorials/nnunet_mito_inference.yaml`)
57+
- Type-safe config schema
58+
- Sliding window parameters
59+
- TTA and post-processing settings
60+
61+
4. **CLI Integration** (`scripts/main.py --mode infer-volume`)
62+
- File list or glob pattern input
63+
- Distributed inference support
64+
- SLURM cluster integration
65+
66+
---
67+
68+
## 🚀 Key Features
69+
70+
| Feature | Status | Description |
71+
|---------|--------|-------------|
72+
| **Zero-Copy Loading** | ✅ Designed | Direct model loading, no temporary files |
73+
| **Memory-Efficient** | ✅ Designed | Sliding window + volume-by-volume processing |
74+
| **Scalable** | ✅ Designed | Multi-GPU distributed inference |
75+
| **Resumable** | ✅ Designed | Skip existing outputs automatically |
76+
| **Format-Agnostic** | ✅ Designed | HDF5, TIFF, PNG, Zarr support |
77+
| **Post-Processing** | ✅ Designed | Instance segmentation via watershed/CC |
78+
| **Production-Ready** | ✅ Designed | Error recovery, monitoring, logging |
79+
80+
---
81+
82+
## 📈 Performance Projections
83+
84+
### Single GPU (A100)
85+
- **No TTA**: 200 slices/sec → 720K volumes/hour
86+
- **With TTA (4×)**: 80 slices/sec → 288K volumes/hour
87+
- **Memory**: <8 GB GPU RAM for 512×512 images
88+
89+
### Multi-GPU Scaling
90+
- **4 GPUs**: 3.85× speedup (96% efficiency) → 5.5M volumes/day
91+
- **8 GPUs**: 7.50× speedup (94% efficiency) → 10.8M volumes/day
92+
93+
---
94+
95+
## 📝 Implementation Plan
96+
97+
### Phase 1: Core Integration (Week 1)
98+
- ✅ nnUNet model wrapper
99+
- ✅ Hydra config schema
100+
- ✅ Example YAML config
101+
- ✅ Unit tests (90%+ coverage)
102+
103+
### Phase 2: Volume Processing (Week 2)
104+
- ✅ Volume processor class
105+
- ✅ CLI integration (`--mode infer-volume`)
106+
- ✅ Integration tests
107+
108+
### Phase 3: Distributed Inference (Week 3)
109+
- ✅ Multi-GPU support (Lightning DDP)
110+
- ✅ SLURM launcher scripts
111+
- ✅ Performance benchmarks
112+
113+
### Phase 4: Production Hardening (Week 4)
114+
- ✅ Error recovery and checkpointing
115+
- ✅ Monitoring (TensorBoard, memory tracking)
116+
- ✅ Documentation and user guides
117+
118+
---
119+
120+
## 💡 Usage Examples
121+
122+
### Basic Inference
123+
```bash
124+
python scripts/main.py \
125+
--config tutorials/nnunet_mito_inference.yaml \
126+
--mode test \
127+
--checkpoint /path/to/mito_semantic_2d.pth
128+
```
129+
130+
### Large-Scale Volume Inference
131+
```bash
132+
python scripts/main.py \
133+
--config tutorials/nnunet_mito_inference.yaml \
134+
--mode infer-volume \
135+
--checkpoint /path/to/mito_semantic_2d.pth
136+
```
137+
138+
### Distributed Inference (4 GPUs)
139+
```bash
140+
# Each GPU processes every 4th file
141+
for GPU_ID in {0..3}; do
142+
python scripts/main.py \
143+
--config tutorials/nnunet_mito_inference.yaml \
144+
--mode infer-volume \
145+
--checkpoint /path/to/model \
146+
inference.volume_mode.start_index=$GPU_ID \
147+
inference.volume_mode.step=4 \
148+
system.device=cuda:$GPU_ID &
149+
done
150+
```
151+
152+
---
153+
154+
## 🎓 Key Design Decisions
155+
156+
1. **Wrapper Pattern**: Wrap nnUNet models as `nn.Module` for PyTC compatibility
157+
2. **No Preprocessing Fork**: Use nnUNet's existing normalization (Z-score)
158+
3. **MONAI Sliding Window**: Reuse PyTC's existing sliding window infrastructure
159+
4. **Independent File Processing**: No shared state for distributed inference
160+
5. **Resume-First Design**: Skip existing outputs by default (production safety)
161+
162+
---
163+
164+
## 🔒 Risk Mitigation
165+
166+
| Risk | Mitigation |
167+
|------|------------|
168+
| **nnUNet API changes** | Pin nnunetv2 version, use stable API |
169+
| **Memory overflow** | Conservative batch sizes, sliding window |
170+
| **Format incompatibility** | Comprehensive I/O testing, fallbacks |
171+
| **Checkpoint corruption** | Validation on load, checksum verification |
172+
| **Distributed errors** | Independent processing, no synchronization needed |
173+
174+
---
175+
176+
## 📚 Documentation Deliverables
177+
178+
1. **NNUNET_INTEGRATION_DESIGN.md** - Full technical design (this document's companion)
179+
2. **docs/nnunet_integration.md** - User guide
180+
3. **tutorials/nnunet_mito_inference.yaml** - Annotated example config
181+
4. **TROUBLESHOOTING_NNUNET.md** - Common issues and solutions
182+
5. **API Reference** - Docstrings for all new classes/functions
183+
184+
---
185+
186+
## 🧪 Testing Strategy
187+
188+
### Unit Tests (>90% coverage)
189+
- nnUNet model loading
190+
- Forward pass (2D/3D)
191+
- Config validation
192+
- File I/O operations
193+
194+
### Integration Tests
195+
- End-to-end inference pipeline
196+
- Multi-volume processing
197+
- Post-processing chains
198+
- Output format verification
199+
200+
### Performance Tests
201+
- Throughput benchmarks
202+
- Memory profiling
203+
- Scaling efficiency (1-8 GPUs)
204+
- SLURM job validation
205+
206+
---
207+
208+
## 🎯 Success Criteria
209+
210+
**Functional**:
211+
- Load pre-trained nnUNet models without modification
212+
- Process 1000+ volumes without intervention
213+
- Resume from interruptions automatically
214+
- Achieve >95% test coverage
215+
216+
**Performance**:
217+
- >100 slices/sec on A100 GPU (with TTA)
218+
- <16 GB GPU memory for 512×512 images
219+
- >95% scaling efficiency on 4 GPUs
220+
221+
**Production**:
222+
- Zero data loss on errors
223+
- Comprehensive logging and monitoring
224+
- User-friendly configuration
225+
- Complete documentation
226+
227+
---
228+
229+
## 📅 Timeline
230+
231+
| Week | Milestone | Deliverables |
232+
|------|-----------|--------------|
233+
| **Week 1** | Core Integration | Model wrapper, config schema, unit tests |
234+
| **Week 2** | Volume Processing | CLI integration, resume capability, integration tests |
235+
| **Week 3** | Distributed Inference | Multi-GPU support, SLURM scripts, benchmarks |
236+
| **Week 4** | Production Hardening | Error recovery, monitoring, documentation |
237+
238+
**Total**: 4 weeks to production-ready system
239+
240+
---
241+
242+
## 🔮 Future Enhancements
243+
244+
### Short-term (3 months)
245+
- Fine-tuning nnUNet models in PyTC
246+
- Model ensembling (multiple checkpoints)
247+
- Automatic preprocessing pipeline
248+
- Pre-trained model zoo
249+
250+
### Long-term (6-12 months)
251+
- Cloud storage integration (S3/GCS)
252+
- Streaming inference (Zarr/N5)
253+
- Auto-tuning sliding window parameters
254+
- Active learning pipelines
255+
256+
---
257+
258+
## 📞 Next Steps
259+
260+
1. **Review** this design with stakeholders
261+
2. **Approve** architecture and implementation plan
262+
3. **Validate** on real `mito_2d_semantic_model` checkpoint
263+
4. **Begin Phase 1** implementation (model wrapper)
264+
5. **Test** on small-scale dataset (<100 volumes)
265+
6. **Scale** to production datasets (1000s of volumes)
266+
267+
---
268+
269+
## 📖 Full Documentation
270+
271+
See **NNUNET_INTEGRATION_DESIGN.md** for:
272+
- Detailed component specifications
273+
- Code examples and API reference
274+
- Performance analysis and benchmarks
275+
- Testing protocols
276+
- Migration guides
277+
- Troubleshooting
278+
279+
---
280+
281+
**Status**: ✅ Design Complete - Ready for Implementation
282+
**Last Updated**: 2025-11-26
283+
**Contact**: See CLAUDE.md for framework details

0 commit comments

Comments
 (0)