@@ -1028,15 +1028,6 @@ FAQ
10281028 speedup can be obtained by using a GPU implementation since all operations
10291029 are matrix/vector products.
10301030
1031- 4. **Using GPU fails with error: module 'ot' has no attribute 'gpu' **
1032-
1033- In order to limit import time and hard dependencies in POT. we do not import
1034- some sub-modules automatically with :code: `import ot `. In order to use the
1035- acceleration in :any: `ot.gpu ` you need first to import is with
1036- :code: `import ot.gpu `.
1037-
1038- See `Issue #85 <https://github.com/rflamary/POT/issues/85 >`__ and :any: `ot.gpu `
1039- for more details.
10401031
10411032
10421033References
@@ -1172,3 +1163,52 @@ References
11721163 .. [30 ] Flamary, Rémi, et al. "Optimal transport with Laplacian regularization:
11731164 Applications to domain adaptation and shape matching." NIPS Workshop on Optimal
11741165 Transport and Machine Learning OTML. 2014.
1166+
1167+ .. [31 ] Bonneel, Nicolas, et al. `Sliced and radon wasserstein barycenters of
1168+ measures
1169+ <https://perso.liris.cnrs.fr/nicolas.bonneel/WassersteinSliced-JMIV.pdf> `_\
1170+ , Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45
1171+
1172+ .. [32 ] Huang, M., Ma S., Lai, L. (2021). `A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance <http://proceedings.mlr.press/v139/huang21e.html >`_\ , Proceedings of the 38th International Conference on Machine Learning (ICML).
1173+
1174+ .. [33 ] Kerdoncuff T., Emonet R., Marc S. `Sampled Gromov Wasserstein
1175+ <https://hal.archives-ouvertes.fr/hal-03232509/document> `_\ , Machine
1176+ Learning Journal (MJL), 2021
1177+
1178+ .. [34 ] Feydy, J., Séjourné, T., Vialard, F. X., Amari, S. I., Trouvé, A., &
1179+ Peyré, G. (2019, April). `Interpolating between optimal transport and MMD
1180+ using Sinkhorn divergences
1181+ <http://proceedings.mlr.press/v89/feydy19a/feydy19a.pdf> `_. In The 22nd
1182+ International Conference on Artificial Intelligence and Statistics (pp.
1183+ 2681-2690). PMLR.
1184+
1185+ .. [35 ] Deshpande, I., Hu, Y. T., Sun, R., Pyrros, A., Siddiqui, N., Koyejo, S.,
1186+ & Schwing, A. G. (2019). `Max-sliced wasserstein distance and its use
1187+ for gans
1188+ <https://openaccess.thecvf.com/content_CVPR_2019/papers/Deshpande_Max-Sliced_Wasserstein_Distance_and_Its_Use_for_GANs_CVPR_2019_paper.pdf> `_.
1189+ In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10648-10656).
1190+
1191+ .. [36 ] Liutkus, A., Simsekli, U., Majewski, S., Durmus, A., & Stöter, F. R.
1192+ (2019, May). `Sliced-Wasserstein flows: Nonparametric generative modeling via
1193+ optimal transport and diffusions
1194+ <http://proceedings.mlr.press/v97/liutkus19a/liutkus19a.pdf> `_. In International
1195+ Conference on Machine Learning (pp. 4104-4113). PMLR.
1196+
1197+ .. [37 ] Janati, H., Cuturi, M., Gramfort, A. `Debiased sinkhorn barycenters
1198+ <http://proceedings.mlr.press/v119/janati20a/janati20a.pdf> `_ Proceedings of
1199+ the 37th International Conference on Machine Learning, PMLR 119:4692-4701, 2020
1200+
1201+ .. [38 ] C. Vincent-Cuaz, T. Vayer, R. Flamary, M. Corneli, N. Courty, `Online
1202+ Graph Dictionary Learning <https://arxiv.org/pdf/2102.06555.pdf> `_\ ,
1203+ International Conference on Machine Learning (ICML), 2021.
1204+
1205+ .. [39 ] Gozlan, N., Roberto, C., Samson, P. M., & Tetali, P. (2017).
1206+ `Kantorovich duality for general transport costs and applications
1207+ <https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.1825&rep=rep1&type=pdf> `_.
1208+ Journal of Functional Analysis, 273(11), 3327-3405.
1209+
1210+ .. [40 ] Forrow, A., Hütter, J. C., Nitzan, M., Rigollet, P., Schiebinger, G., &
1211+ Weed, J. (2019, April). `Statistical optimal transport via factored
1212+ couplings <http://proceedings.mlr.press/v89/forrow19a/forrow19a.pdf> `_. In
1213+ The 22nd International Conference on Artificial Intelligence and Statistics
1214+ (pp. 2454-2465). PMLR.
0 commit comments