Skip to content

Commit d974834

Browse files
committed
update cwt docstring
1 parent 9bbed61 commit d974834

File tree

1 file changed

+6
-3
lines changed

1 file changed

+6
-3
lines changed

pywt/_cwt.py

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -66,12 +66,16 @@ def cwt(data, scales, wavelet, sampling_period=1., method='conv', axis=-1):
6666
The ``fft`` method is ``O(N * log2(N))`` with
6767
``N = len(scale) + len(data) - 1``. It is well suited for large size
6868
signals but slightly slower than ``conv`` on small ones.
69+
axis: int, optional
70+
Axis over which to compute the CWT. If not given, the last axis is
71+
used.
6972
7073
Returns
7174
-------
7275
coefs : array_like
7376
Continuous wavelet transform of the input signal for the given scales
74-
and wavelet
77+
and wavelet. The first axis of ``coefs`` corresponds to the scales.
78+
The remaining axes match the shape of ``data``.
7579
frequencies : array_like
7680
If the unit of sampling period are seconds and given, than frequencies
7781
are in hertz. Otherwise, a sampling period of 1 is assumed.
@@ -135,7 +139,7 @@ def cwt(data, scales, wavelet, sampling_period=1., method='conv', axis=-1):
135139
# move axis to be transformed last (so it is contiguous)
136140
data = data.swapaxes(-1, axis)
137141

138-
# reshape to (n_batch, data.shape[axis])
142+
# reshape to (n_batch, data.shape[-1])
139143
data_shape_pre = data.shape
140144
data = data.reshape((-1, data.shape[-1]))
141145

@@ -195,4 +199,3 @@ def cwt(data, scales, wavelet, sampling_period=1., method='conv', axis=-1):
195199
frequencies = np.array([frequencies])
196200
frequencies /= sampling_period
197201
return out, frequencies
198-

0 commit comments

Comments
 (0)