@@ -135,7 +135,6 @@ def dwt(data, wavelet, mode='symmetric', axis=-1):
135135 Axis over which to compute the DWT. If not given, the
136136 last axis is used.
137137
138-
139138 Returns
140139 -------
141140 (cA, cD) : tuple
@@ -211,7 +210,6 @@ def idwt(cA, cD, wavelet, mode='symmetric', axis=-1):
211210 Axis over which to compute the inverse DWT. If not given, the
212211 last axis is used.
213212
214-
215213 Returns
216214 -------
217215 rec: array_like
@@ -406,7 +404,7 @@ def upcoef(part, coeffs, wavelet, level=1, take=0):
406404def pad (x , pad_widths , mode ):
407405 """Extend a 1D signal using a given boundary mode.
408406
409- This function operates like `numpy.pad` but supports all signal extension
407+ This function operates like `` numpy.pad` ` but supports all signal extension
410408 modes that can be used by PyWavelets discrete wavelet transforms.
411409
412410 Parameters
@@ -420,7 +418,7 @@ def pad(x, pad_widths, mode):
420418 axis. (pad,) or int is a shortcut for before = after = pad width for
421419 all axes.
422420 mode : str, optional
423- Signal extension mode, see Modes.
421+ Signal extension mode, see :ref:` Modes <ref-modes>` .
424422
425423 Returns
426424 -------
@@ -430,9 +428,9 @@ def pad(x, pad_widths, mode):
430428
431429 Notes
432430 -----
433- The performance of padding in dimensions > 1 will be substantially slower
434- for modes `smooth` and `antisymmetric` as these modes are not supported in
435- an efficient manner by the underlying `numpy.pad` function.
431+ The performance of padding in dimensions > 1 may be substantially slower
432+ for modes `` smooth`` and `` antisymmetric`` as these modes are not supported
433+ efficiently by the underlying `` numpy.pad` ` function.
436434 """
437435 x = np .asanyarray (x )
438436
0 commit comments