@@ -33,7 +33,7 @@ download:
3333
3434 # NOTE: Please consider using the Step1 and one of Step2 for new dataset,
3535 # [something] should be replaced with the actual value.
36- # Step1. DOWNLOAD: wget -N [SOURCE_FILE] -P $(DATADIR)
36+ # Step1. DOWNLOAD: wget -nv - N [SOURCE_FILE] -P $(DATADIR)
3737 # Step2-1. UNZIP: unzip -o $(DATADIR)/[SOURCE_FILE] -d [*_source/data/]
3838 # Step2-2. UNTAR: tar -xzf $(DATADIR)/[SOURCE_FILE] -C [*_source/data/]
3939 # Step2-3. AS-IS: cp $(DATADIR)/[SOURCE_FILE] [*_source/data/]
@@ -46,18 +46,18 @@ download:
4646 mkdir -p prototype_source/data
4747
4848 # transfer learning tutorial data
49- wget -N https://download.pytorch.org/tutorial/hymenoptera_data.zip -P $(DATADIR)
49+ wget -nv - N https://download.pytorch.org/tutorial/hymenoptera_data.zip -P $(DATADIR)
5050 unzip $(ZIPOPTS) $(DATADIR)/hymenoptera_data.zip -d beginner_source/data/
5151
5252 # nlp tutorial data
53- wget -N https://download.pytorch.org/tutorial/data.zip -P $(DATADIR)
53+ wget -nv - N https://download.pytorch.org/tutorial/data.zip -P $(DATADIR)
5454 unzip $(ZIPOPTS) $(DATADIR)/data.zip -d intermediate_source/ # This will unzip all files in data.zip to intermediate_source/data/ folder
5555
5656 # data loader tutorial
57- wget -N https://download.pytorch.org/tutorial/faces.zip -P $(DATADIR)
57+ wget -nv - N https://download.pytorch.org/tutorial/faces.zip -P $(DATADIR)
5858 unzip $(ZIPOPTS) $(DATADIR)/faces.zip -d beginner_source/data/
5959
60- wget -N https://download.pytorch.org/models/tutorials/4000_checkpoint.tar -P $(DATADIR)
60+ wget -nv - N https://download.pytorch.org/models/tutorials/4000_checkpoint.tar -P $(DATADIR)
6161 cp $(DATADIR)/4000_checkpoint.tar beginner_source/data/
6262
6363 # neural style images
@@ -66,41 +66,45 @@ download:
6666 cp -r _static/img/neural-style/ advanced_source/data/images/
6767
6868 # Download dataset for beginner_source/dcgan_faces_tutorial.py
69- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/img_align_celeba.zip -P $(DATADIR)
69+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/img_align_celeba.zip -P $(DATADIR)
7070 unzip $(ZIPOPTS) $(DATADIR)/img_align_celeba.zip -d beginner_source/data/celeba
7171
7272 # Download dataset for beginner_source/hybrid_frontend/introduction_to_hybrid_frontend_tutorial.py
73- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/iris.data -P $(DATADIR)
73+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/iris.data -P $(DATADIR)
7474 cp $(DATADIR)/iris.data beginner_source/data/
7575
7676 # Download dataset for beginner_source/chatbot_tutorial.py
77- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/cornell_movie_dialogs_corpus .zip -P $(DATADIR)
78- unzip $(ZIPOPTS) $(DATADIR)/cornell_movie_dialogs_corpus .zip -d beginner_source/data/
77+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/cornell_movie_dialogs_corpus_v2 .zip -P $(DATADIR)
78+ unzip $(ZIPOPTS) $(DATADIR)/cornell_movie_dialogs_corpus_v2 .zip -d beginner_source/data/
7979
8080 # Download dataset for beginner_source/audio_classifier_tutorial.py
81- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/UrbanSound8K.tar.gz -P $(DATADIR)
81+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/UrbanSound8K.tar.gz -P $(DATADIR)
8282 tar $(TAROPTS) -xzf $(DATADIR)/UrbanSound8K.tar.gz -C ./beginner_source/data/
8383
8484 # Download model for beginner_source/fgsm_tutorial.py
85- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/lenet_mnist_model.pth -P $(DATADIR)
85+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/lenet_mnist_model.pth -P $(DATADIR)
8686 cp $(DATADIR)/lenet_mnist_model.pth ./beginner_source/data/lenet_mnist_model.pth
8787
8888 # Download model for advanced_source/dynamic_quantization_tutorial.py
89- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/word_language_model_quantize.pth -P $(DATADIR)
89+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/word_language_model_quantize.pth -P $(DATADIR)
9090 cp $(DATADIR)/word_language_model_quantize.pth advanced_source/data/word_language_model_quantize.pth
9191
9292 # Download data for advanced_source/dynamic_quantization_tutorial.py
93- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/wikitext-2.zip -P $(DATADIR)
93+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/wikitext-2.zip -P $(DATADIR)
9494 unzip $(ZIPOPTS) $(DATADIR)/wikitext-2.zip -d advanced_source/data/
9595
9696 # Download model for advanced_source/static_quantization_tutorial.py
97- wget -N https://download.pytorch.org/models/mobilenet_v2-b0353104.pth -P $(DATADIR)
97+ wget -nv - N https://download.pytorch.org/models/mobilenet_v2-b0353104.pth -P $(DATADIR)
9898 cp $(DATADIR)/mobilenet_v2-b0353104.pth advanced_source/data/mobilenet_pretrained_float.pth
9999
100100 # Download model for prototype_source/graph_mode_static_quantization_tutorial.py
101- wget -N https://download.pytorch.org/models/resnet18-5c106cde.pth -P $(DATADIR)
101+ wget -nv - N https://download.pytorch.org/models/resnet18-5c106cde.pth -P $(DATADIR)
102102 cp $(DATADIR)/resnet18-5c106cde.pth prototype_source/data/resnet18_pretrained_float.pth
103103
104+ # Download vocab for beginner_source/flava_finetuning_tutorial.py
105+ wget -nv -N http://dl.fbaipublicfiles.com/pythia/data/vocab.tar.gz -P $(DATADIR)
106+ tar $(TAROPTS) -xzf $(DATADIR)/vocab.tar.gz -C ./beginner_source/data/
107+
104108 # Download some dataset for beginner_source/translation_transformer.py
105109 python -m spacy download en_core_web_sm
106110 python -m spacy download de_core_news_sm
0 commit comments