|
| 1 | +import math |
| 2 | +from typing import Any, Callable, Dict, List, Optional, TypedDict, Unpack |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +from numpy import _typing |
| 6 | + |
| 7 | +from src.estimators.estimate_result import EstimateResult |
| 8 | + |
| 9 | +SIGMA_DEFAULT_VALUE: float = 1 |
| 10 | +BOHMAN_N_DEFAULT_VALUE: int = 10000 |
| 11 | +BOHMAN_DELTA_DEFAULT_VALUE: float = 0.0001 |
| 12 | +X_DATA_DEFAULT_VALUE: List[float] = [1.0] |
| 13 | + |
| 14 | + |
| 15 | +class NMSemiParametricGEstimation: |
| 16 | + """Estimation of mixing density function g (xi density function) of NM mixture |
| 17 | + represented in canonical form Y = xi + sigma*N. |
| 18 | +
|
| 19 | + Args: |
| 20 | + sample: Sample data from the analyzed distribution |
| 21 | + params: Algorithm parameters including: |
| 22 | + - x_data: Evaluation points for density estimation |
| 23 | + - sigman |
| 24 | + - bohman_n |
| 25 | + - bohman_delta |
| 26 | +
|
| 27 | + Raises: |
| 28 | + ValueError: If input sample is empty or invalid parameters provided |
| 29 | + """ |
| 30 | + |
| 31 | + class ParamsAnnotation(TypedDict, total=False): |
| 32 | + x_data: List[float] |
| 33 | + sigma: float |
| 34 | + bohman_n: int |
| 35 | + bohman_delta: float |
| 36 | + |
| 37 | + def __init__(self, sample: Optional[_typing.NDArray[np.float64]] = None, **kwargs: Unpack[ParamsAnnotation]): |
| 38 | + self.sample: _typing.NDArray[np.float64] = np.array([]) if sample is None else sample |
| 39 | + self.n: int = len(self.sample) |
| 40 | + ( |
| 41 | + self.x_data, |
| 42 | + self.sigma, |
| 43 | + self.bohman_n, |
| 44 | + self.bohman_delta, |
| 45 | + ) = self._validate_kwargs(**kwargs) |
| 46 | + |
| 47 | + @staticmethod |
| 48 | + def _validate_kwargs(**kwargs: Unpack[ParamsAnnotation]) -> tuple[List[float], float, int, float]: |
| 49 | + x_data: List[float] = kwargs.get("x_data", X_DATA_DEFAULT_VALUE) |
| 50 | + sigma: float = kwargs.get("sigma", SIGMA_DEFAULT_VALUE) |
| 51 | + bohman_n: int = kwargs.get("bohman_n", BOHMAN_N_DEFAULT_VALUE) |
| 52 | + bohman_delta: float = kwargs.get("bohman_delta", BOHMAN_DELTA_DEFAULT_VALUE) |
| 53 | + return x_data, sigma, bohman_n, bohman_delta |
| 54 | + |
| 55 | + def characteristic_function_mixture(self, t: float) -> complex: |
| 56 | + smm = 0 |
| 57 | + for i in range(self.n): |
| 58 | + smm += np.exp(1j * t * self.sample[i]) |
| 59 | + return smm / self.n |
| 60 | + |
| 61 | + def characteristic_function_normal(self, t: float) -> complex: |
| 62 | + return np.exp(-0.5 * (self.sigma**2) * t**2) |
| 63 | + |
| 64 | + def characteristic_function_xi(self, t: float) -> complex: |
| 65 | + denominator = np.maximum(np.abs(self.characteristic_function_normal(self.sigma * t)), 1e-10) |
| 66 | + return self.characteristic_function_mixture(t) / denominator |
| 67 | + |
| 68 | + class BohmanA: |
| 69 | + def __init__(self, N: int = int(1e3), delta: float = 1e-1) -> None: |
| 70 | + super().__init__() |
| 71 | + self.N: int = N |
| 72 | + self.delta: float = delta |
| 73 | + self.coeff_0: float = 0.5 |
| 74 | + self.coeff_1: float = 0.0 |
| 75 | + self.coeff: np.ndarray = np.array([]) |
| 76 | + |
| 77 | + def fit(self, phi: Callable) -> None: |
| 78 | + self.coeff_0 = 0.5 |
| 79 | + self.coeff_1 = self.delta / (2 * np.pi) |
| 80 | + |
| 81 | + v_values = np.arange(1 - self.N, self.N) |
| 82 | + v_values = v_values[v_values != 0] |
| 83 | + |
| 84 | + self.coeff = phi(self.delta * v_values) / (2 * np.pi * 1j * v_values) |
| 85 | + |
| 86 | + def cdf(self, X: np.ndarray) -> np.ndarray: |
| 87 | + v = np.arange(1 - self.N, self.N) |
| 88 | + v_non_zero = v[v != 0] |
| 89 | + |
| 90 | + x_vect = np.outer(X, v_non_zero) |
| 91 | + |
| 92 | + F_x = self.coeff_0 + X * self.coeff_1 + (-np.exp(-1j * self.delta * x_vect) @ self.coeff) |
| 93 | + |
| 94 | + return F_x.real |
| 95 | + |
| 96 | + def algorithm(self, sample: _typing.NDArray[np.float64]) -> EstimateResult: |
| 97 | + inv = self.BohmanA(N=self.bohman_n, delta=self.bohman_delta) |
| 98 | + inv.fit(self.characteristic_function_xi) |
| 99 | + x_data_array = np.array(self.x_data, dtype=np.float64) |
| 100 | + estimated_cdf = inv.cdf(x_data_array) |
| 101 | + estimated_pdf = np.gradient(estimated_cdf, x_data_array) |
| 102 | + return EstimateResult(list_value=estimated_pdf.tolist(), success=True) |
0 commit comments