Skip to content

Commit a5ca100

Browse files
authored
Update test_mixing_normal.py
1 parent fc60228 commit a5ca100

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

tests/generators/nm_generator/test_mixing_normal.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -16,38 +16,38 @@ class TestMixingNormal:
1616
)
1717
def test_classic_generate_variance_0(self, mixing_variance: float, expected_variance: float) -> None:
1818
mixture = NormalMeanMixtures("classical", alpha=0, beta=mixing_variance**0.5, gamma=1, distribution=norm)
19-
sample = self.generator.classical_generate(mixture, self.test_mixture_size)
19+
sample = self.generator.generate(mixture, self.test_mixture_size)
2020
actual_variance = ndimage.variance(sample)
2121
assert actual_variance == pytest.approx(expected_variance, 0.1)
2222

2323
@pytest.mark.parametrize("beta", np.random.uniform(0, 100, size=50))
2424
def test_classic_generate_variance_1(self, beta: float) -> None:
2525
expected_variance = beta**2 + 1
2626
mixture = NormalMeanMixtures("classical", alpha=0, beta=beta, gamma=1, distribution=norm)
27-
sample = self.generator.classical_generate(mixture, self.test_mixture_size)
27+
sample = self.generator.generate(mixture, self.test_mixture_size)
2828
actual_variance = ndimage.variance(sample)
2929
assert actual_variance == pytest.approx(expected_variance, 0.1)
3030

3131
@pytest.mark.parametrize("beta, gamma", np.random.uniform(0, 100, size=(50, 2)))
3232
def test_classic_generate_variance_2(self, beta: float, gamma: float) -> None:
3333
expected_variance = beta**2 + gamma**2
3434
mixture = NormalMeanMixtures("classical", alpha=0, beta=beta, gamma=gamma, distribution=norm)
35-
sample = self.generator.classical_generate(mixture, self.test_mixture_size)
35+
sample = self.generator.generate(mixture, self.test_mixture_size)
3636
actual_variance = ndimage.variance(sample)
3737
assert actual_variance == pytest.approx(expected_variance, 0.1)
3838

3939
@pytest.mark.parametrize("beta, gamma", np.random.uniform(0, 10, size=(50, 2)))
4040
def test_classic_generate_mean(self, beta: float, gamma: float) -> None:
4141
expected_mean = 0
4242
mixture = NormalMeanMixtures("classical", alpha=0, beta=beta, gamma=gamma, distribution=norm)
43-
sample = self.generator.classical_generate(mixture, self.test_mixture_size)
43+
sample = self.generator.generate(mixture, self.test_mixture_size)
4444
actual_mean = np.mean(np.array(sample))
4545
assert abs(actual_mean - expected_mean) < 1
4646

4747
@pytest.mark.parametrize("expected_size", np.random.randint(0, 100, size=50))
4848
def test_classic_generate_size(self, expected_size: int) -> None:
4949
mixture = NormalMeanMixtures("classical", alpha=0, beta=1, gamma=1, distribution=norm)
50-
sample = self.generator.classical_generate(mixture, expected_size)
50+
sample = self.generator.generate(mixture, expected_size)
5151
actual_size = np.size(sample)
5252
assert actual_size == expected_size
5353

@@ -56,37 +56,37 @@ def test_classic_generate_size(self, expected_size: int) -> None:
5656
)
5757
def test_canonical_generate_variance_0(self, mixing_variance: float, expected_variance: float) -> None:
5858
mixture = NormalMeanMixtures("canonical", sigma=1, distribution=norm(0, mixing_variance**0.5))
59-
sample = self.generator.canonical_generate(mixture, self.test_mixture_size)
59+
sample = self.generator.generate(mixture, self.test_mixture_size)
6060
actual_variance = ndimage.variance(sample)
6161
assert actual_variance == pytest.approx(expected_variance, 0.1)
6262

6363
@pytest.mark.parametrize("sigma", np.random.uniform(0, 100, size=50))
6464
def test_canonical_generate_variance_1(self, sigma: float) -> None:
6565
expected_variance = sigma**2 + 1
6666
mixture = NormalMeanMixtures("canonical", sigma=sigma, distribution=norm)
67-
sample = self.generator.canonical_generate(mixture, self.test_mixture_size)
67+
sample = self.generator.generate(mixture, self.test_mixture_size)
6868
actual_variance = ndimage.variance(sample)
6969
assert actual_variance == pytest.approx(expected_variance, 0.1)
7070

7171
@pytest.mark.parametrize("mixing_variance, sigma", np.random.uniform(0, 100, size=(50, 2)))
7272
def test_canonical_generate_variance_2(self, mixing_variance: float, sigma: float) -> None:
7373
expected_variance = mixing_variance + sigma**2
7474
mixture = NormalMeanMixtures("canonical", sigma=sigma, distribution=norm(0, mixing_variance**0.5))
75-
sample = self.generator.canonical_generate(mixture, self.test_mixture_size)
75+
sample = self.generator.generate(mixture, self.test_mixture_size)
7676
actual_variance = ndimage.variance(sample)
7777
assert actual_variance == pytest.approx(expected_variance, 0.1)
7878

7979
@pytest.mark.parametrize("sigma", np.random.uniform(0, 10, size=50))
8080
def test_canonical_generate_mean(self, sigma: float) -> None:
8181
expected_mean = 0
8282
mixture = NormalMeanMixtures("canonical", sigma=sigma, distribution=norm)
83-
sample = self.generator.canonical_generate(mixture, self.test_mixture_size)
83+
sample = self.generator.generate(mixture, self.test_mixture_size)
8484
actual_mean = np.mean(np.array(sample))
8585
assert abs(actual_mean - expected_mean) < 1
8686

8787
@pytest.mark.parametrize("expected_size", [*np.random.randint(0, 100, size=50), 0, 1, 1000000])
8888
def test_canonical_generate_size(self, expected_size: int) -> None:
8989
mixture = NormalMeanMixtures("canonical", sigma=1, distribution=norm)
90-
sample = self.generator.canonical_generate(mixture, expected_size)
90+
sample = self.generator.generate(mixture, expected_size)
9191
actual_size = np.size(sample)
9292
assert actual_size == expected_size

0 commit comments

Comments
 (0)