@@ -16,38 +16,38 @@ class TestMixingNormal:
1616 )
1717 def test_classic_generate_variance_0 (self , mixing_variance : float , expected_variance : float ) -> None :
1818 mixture = NormalMeanMixtures ("classical" , alpha = 0 , beta = mixing_variance ** 0.5 , gamma = 1 , distribution = norm )
19- sample = self .generator .classical_generate (mixture , self .test_mixture_size )
19+ sample = self .generator .generate (mixture , self .test_mixture_size )
2020 actual_variance = ndimage .variance (sample )
2121 assert actual_variance == pytest .approx (expected_variance , 0.1 )
2222
2323 @pytest .mark .parametrize ("beta" , np .random .uniform (0 , 100 , size = 50 ))
2424 def test_classic_generate_variance_1 (self , beta : float ) -> None :
2525 expected_variance = beta ** 2 + 1
2626 mixture = NormalMeanMixtures ("classical" , alpha = 0 , beta = beta , gamma = 1 , distribution = norm )
27- sample = self .generator .classical_generate (mixture , self .test_mixture_size )
27+ sample = self .generator .generate (mixture , self .test_mixture_size )
2828 actual_variance = ndimage .variance (sample )
2929 assert actual_variance == pytest .approx (expected_variance , 0.1 )
3030
3131 @pytest .mark .parametrize ("beta, gamma" , np .random .uniform (0 , 100 , size = (50 , 2 )))
3232 def test_classic_generate_variance_2 (self , beta : float , gamma : float ) -> None :
3333 expected_variance = beta ** 2 + gamma ** 2
3434 mixture = NormalMeanMixtures ("classical" , alpha = 0 , beta = beta , gamma = gamma , distribution = norm )
35- sample = self .generator .classical_generate (mixture , self .test_mixture_size )
35+ sample = self .generator .generate (mixture , self .test_mixture_size )
3636 actual_variance = ndimage .variance (sample )
3737 assert actual_variance == pytest .approx (expected_variance , 0.1 )
3838
3939 @pytest .mark .parametrize ("beta, gamma" , np .random .uniform (0 , 10 , size = (50 , 2 )))
4040 def test_classic_generate_mean (self , beta : float , gamma : float ) -> None :
4141 expected_mean = 0
4242 mixture = NormalMeanMixtures ("classical" , alpha = 0 , beta = beta , gamma = gamma , distribution = norm )
43- sample = self .generator .classical_generate (mixture , self .test_mixture_size )
43+ sample = self .generator .generate (mixture , self .test_mixture_size )
4444 actual_mean = np .mean (np .array (sample ))
4545 assert abs (actual_mean - expected_mean ) < 1
4646
4747 @pytest .mark .parametrize ("expected_size" , np .random .randint (0 , 100 , size = 50 ))
4848 def test_classic_generate_size (self , expected_size : int ) -> None :
4949 mixture = NormalMeanMixtures ("classical" , alpha = 0 , beta = 1 , gamma = 1 , distribution = norm )
50- sample = self .generator .classical_generate (mixture , expected_size )
50+ sample = self .generator .generate (mixture , expected_size )
5151 actual_size = np .size (sample )
5252 assert actual_size == expected_size
5353
@@ -56,37 +56,37 @@ def test_classic_generate_size(self, expected_size: int) -> None:
5656 )
5757 def test_canonical_generate_variance_0 (self , mixing_variance : float , expected_variance : float ) -> None :
5858 mixture = NormalMeanMixtures ("canonical" , sigma = 1 , distribution = norm (0 , mixing_variance ** 0.5 ))
59- sample = self .generator .canonical_generate (mixture , self .test_mixture_size )
59+ sample = self .generator .generate (mixture , self .test_mixture_size )
6060 actual_variance = ndimage .variance (sample )
6161 assert actual_variance == pytest .approx (expected_variance , 0.1 )
6262
6363 @pytest .mark .parametrize ("sigma" , np .random .uniform (0 , 100 , size = 50 ))
6464 def test_canonical_generate_variance_1 (self , sigma : float ) -> None :
6565 expected_variance = sigma ** 2 + 1
6666 mixture = NormalMeanMixtures ("canonical" , sigma = sigma , distribution = norm )
67- sample = self .generator .canonical_generate (mixture , self .test_mixture_size )
67+ sample = self .generator .generate (mixture , self .test_mixture_size )
6868 actual_variance = ndimage .variance (sample )
6969 assert actual_variance == pytest .approx (expected_variance , 0.1 )
7070
7171 @pytest .mark .parametrize ("mixing_variance, sigma" , np .random .uniform (0 , 100 , size = (50 , 2 )))
7272 def test_canonical_generate_variance_2 (self , mixing_variance : float , sigma : float ) -> None :
7373 expected_variance = mixing_variance + sigma ** 2
7474 mixture = NormalMeanMixtures ("canonical" , sigma = sigma , distribution = norm (0 , mixing_variance ** 0.5 ))
75- sample = self .generator .canonical_generate (mixture , self .test_mixture_size )
75+ sample = self .generator .generate (mixture , self .test_mixture_size )
7676 actual_variance = ndimage .variance (sample )
7777 assert actual_variance == pytest .approx (expected_variance , 0.1 )
7878
7979 @pytest .mark .parametrize ("sigma" , np .random .uniform (0 , 10 , size = 50 ))
8080 def test_canonical_generate_mean (self , sigma : float ) -> None :
8181 expected_mean = 0
8282 mixture = NormalMeanMixtures ("canonical" , sigma = sigma , distribution = norm )
83- sample = self .generator .canonical_generate (mixture , self .test_mixture_size )
83+ sample = self .generator .generate (mixture , self .test_mixture_size )
8484 actual_mean = np .mean (np .array (sample ))
8585 assert abs (actual_mean - expected_mean ) < 1
8686
8787 @pytest .mark .parametrize ("expected_size" , [* np .random .randint (0 , 100 , size = 50 ), 0 , 1 , 1000000 ])
8888 def test_canonical_generate_size (self , expected_size : int ) -> None :
8989 mixture = NormalMeanMixtures ("canonical" , sigma = 1 , distribution = norm )
90- sample = self .generator .canonical_generate (mixture , expected_size )
90+ sample = self .generator .generate (mixture , expected_size )
9191 actual_size = np .size (sample )
9292 assert actual_size == expected_size
0 commit comments