|
| 1 | +from collections import deque |
| 2 | +from typing import Optional |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import numpy.typing as npt |
| 6 | +from scipy import stats |
| 7 | + |
| 8 | +from pysatl_cpd.core.algorithms.online_algorithm import OnlineAlgorithm |
| 9 | + |
| 10 | + |
| 11 | +class KLDivergenceAlgorithm(OnlineAlgorithm): |
| 12 | + def __init__( |
| 13 | + self, |
| 14 | + window_size: int = 100, |
| 15 | + reference_window_size: Optional[int] = None, |
| 16 | + threshold: float = 0.5, |
| 17 | + num_bins: int = 20, |
| 18 | + use_kde: bool = False, |
| 19 | + symmetric: bool = True, |
| 20 | + smoothing_factor: float = 1e-10, |
| 21 | + ): |
| 22 | + self._window_size = window_size |
| 23 | + self._reference_window_size = reference_window_size or window_size |
| 24 | + self._threshold = threshold |
| 25 | + self._num_bins = num_bins |
| 26 | + self._use_kde = use_kde |
| 27 | + self._symmetric = symmetric |
| 28 | + self._smoothing_factor = smoothing_factor |
| 29 | + |
| 30 | + if window_size <= 0 or self._reference_window_size <= 0: |
| 31 | + raise ValueError("Window sizes must be positive") |
| 32 | + if num_bins <= 1: |
| 33 | + raise ValueError("Number of bins must be greater than 1") |
| 34 | + if threshold <= 0: |
| 35 | + raise ValueError("Threshold must be positive") |
| 36 | + |
| 37 | + self._reference_buffer: deque[float] = deque(maxlen=self._reference_window_size) |
| 38 | + self._current_buffer: deque[float] = deque(maxlen=self._window_size) |
| 39 | + self._kl_values: list[float] = [] |
| 40 | + self._position: int = 0 |
| 41 | + self._last_change_point: Optional[int] = None |
| 42 | + self._reference_updated: bool = False |
| 43 | + |
| 44 | + def detect(self, observation: np.float64 | npt.NDArray[np.float64]) -> bool: |
| 45 | + if isinstance(observation, np.ndarray): |
| 46 | + for obs in observation: |
| 47 | + self._process_single_observation(float(obs)) |
| 48 | + else: |
| 49 | + self._process_single_observation(float(observation)) |
| 50 | + |
| 51 | + return self._last_change_point is not None |
| 52 | + |
| 53 | + def localize(self, observation: np.float64 | npt.NDArray[np.float64]) -> Optional[int]: |
| 54 | + change_detected = self.detect(observation) |
| 55 | + |
| 56 | + if change_detected: |
| 57 | + change_point = self._last_change_point |
| 58 | + self._last_change_point = None |
| 59 | + return change_point |
| 60 | + |
| 61 | + return None |
| 62 | + |
| 63 | + def _process_single_observation(self, observation: float) -> None: |
| 64 | + v = 5 |
| 65 | + self._current_buffer.append(observation) |
| 66 | + self._position += 1 |
| 67 | + |
| 68 | + if len(self._reference_buffer) < self._reference_window_size: |
| 69 | + self._reference_buffer.append(observation) |
| 70 | + return |
| 71 | + |
| 72 | + if len(self._current_buffer) < self._window_size: |
| 73 | + return |
| 74 | + |
| 75 | + kl_divergence = self._calculate_kl_divergence() |
| 76 | + |
| 77 | + if np.isinf(kl_divergence) or np.isnan(kl_divergence): |
| 78 | + kl_divergence = 0.0 |
| 79 | + |
| 80 | + self._kl_values.append(kl_divergence) |
| 81 | + |
| 82 | + if kl_divergence > self._threshold: |
| 83 | + self._last_change_point = self._position - self._window_size // 2 |
| 84 | + self._update_reference_distribution() |
| 85 | + |
| 86 | + if len(self._kl_values) >= v: |
| 87 | + recent_kl = self._kl_values[-5:] |
| 88 | + kl_trend = np.mean(recent_kl) |
| 89 | + if kl_trend > self._threshold * 0.8: |
| 90 | + self._last_change_point = self._position - self._window_size // 4 |
| 91 | + self._update_reference_distribution() |
| 92 | + |
| 93 | + def _calculate_kl_divergence(self) -> float: |
| 94 | + reference_data = np.array(list(self._reference_buffer)) |
| 95 | + current_data = np.array(list(self._current_buffer)) |
| 96 | + |
| 97 | + if self._use_kde: |
| 98 | + return self._calculate_kl_divergence_kde(reference_data, current_data) |
| 99 | + else: |
| 100 | + return self._calculate_kl_divergence_histogram(reference_data, current_data) |
| 101 | + |
| 102 | + def _calculate_kl_divergence_histogram( |
| 103 | + self, ref_data: npt.NDArray[np.float64], curr_data: npt.NDArray[np.float64] |
| 104 | + ) -> float: |
| 105 | + data_min = min(np.min(ref_data), np.min(curr_data)) |
| 106 | + data_max = max(np.max(ref_data), np.max(curr_data)) |
| 107 | + |
| 108 | + margin = (data_max - data_min) * 0.01 |
| 109 | + bin_edges = np.linspace(data_min - margin, data_max + margin, self._num_bins + 1) |
| 110 | + |
| 111 | + ref_hist, _ = np.histogram(ref_data, bins=bin_edges, density=True) |
| 112 | + curr_hist, _ = np.histogram(curr_data, bins=bin_edges, density=True) |
| 113 | + |
| 114 | + ref_prob = ref_hist / np.sum(ref_hist) if np.sum(ref_hist) > 0 else ref_hist |
| 115 | + curr_prob = curr_hist / np.sum(curr_hist) if np.sum(curr_hist) > 0 else curr_hist |
| 116 | + |
| 117 | + ref_prob = ref_prob + self._smoothing_factor |
| 118 | + curr_prob = curr_prob + self._smoothing_factor |
| 119 | + |
| 120 | + ref_prob = ref_prob / np.sum(ref_prob) |
| 121 | + curr_prob = curr_prob / np.sum(curr_prob) |
| 122 | + |
| 123 | + kl_pq = np.sum(ref_prob * np.log(ref_prob / curr_prob)) |
| 124 | + |
| 125 | + if self._symmetric: |
| 126 | + kl_qp = np.sum(curr_prob * np.log(curr_prob / ref_prob)) |
| 127 | + return (kl_pq + kl_qp) / 2 |
| 128 | + else: |
| 129 | + return kl_pq |
| 130 | + |
| 131 | + def _calculate_kl_divergence_kde( |
| 132 | + self, ref_data: npt.NDArray[np.float64], curr_data: npt.NDArray[np.float64] |
| 133 | + ) -> float: |
| 134 | + ref_kde = stats.gaussian_kde(ref_data) |
| 135 | + curr_kde = stats.gaussian_kde(curr_data) |
| 136 | + |
| 137 | + data_min = min(np.min(ref_data), np.min(curr_data)) |
| 138 | + data_max = max(np.max(ref_data), np.max(curr_data)) |
| 139 | + margin = (data_max - data_min) * 0.1 |
| 140 | + x_eval = np.linspace(data_min - margin, data_max + margin, 1000) |
| 141 | + |
| 142 | + ref_density = ref_kde(x_eval) |
| 143 | + curr_density = curr_kde(x_eval) |
| 144 | + |
| 145 | + ref_density = ref_density + self._smoothing_factor |
| 146 | + curr_density = curr_density + self._smoothing_factor |
| 147 | + |
| 148 | + dx = x_eval[1] - x_eval[0] |
| 149 | + ref_density = ref_density / (np.sum(ref_density) * dx) |
| 150 | + curr_density = curr_density / (np.sum(curr_density) * dx) |
| 151 | + |
| 152 | + kl_pq = np.sum(ref_density * np.log(ref_density / curr_density)) * dx |
| 153 | + |
| 154 | + if self._symmetric: |
| 155 | + kl_qp = np.sum(curr_density * np.log(curr_density / ref_density)) * dx |
| 156 | + return (kl_pq + kl_qp) / 2 |
| 157 | + else: |
| 158 | + return kl_pq |
| 159 | + |
| 160 | + def _update_reference_distribution(self) -> None: |
| 161 | + self._reference_buffer.clear() |
| 162 | + for value in self._current_buffer: |
| 163 | + self._reference_buffer.append(value) |
| 164 | + self._reference_updated = True |
| 165 | + |
| 166 | + def get_kl_history(self) -> list[float]: |
| 167 | + return self._kl_values.copy() |
| 168 | + |
| 169 | + def get_current_parameters(self) -> dict: |
| 170 | + return { |
| 171 | + "window_size": self._window_size, |
| 172 | + "reference_window_size": self._reference_window_size, |
| 173 | + "threshold": self._threshold, |
| 174 | + "num_bins": self._num_bins, |
| 175 | + "use_kde": self._use_kde, |
| 176 | + "symmetric": self._symmetric, |
| 177 | + "smoothing_factor": self._smoothing_factor, |
| 178 | + } |
| 179 | + |
| 180 | + def set_parameters( |
| 181 | + self, |
| 182 | + threshold: Optional[float] = None, |
| 183 | + num_bins: Optional[int] = None, |
| 184 | + use_kde: Optional[bool] = None, |
| 185 | + symmetric: Optional[bool] = None, |
| 186 | + smoothing_factor: Optional[float] = None, |
| 187 | + ) -> None: |
| 188 | + if threshold is not None: |
| 189 | + if threshold <= 0: |
| 190 | + raise ValueError("Threshold must be positive") |
| 191 | + self._threshold = threshold |
| 192 | + if num_bins is not None: |
| 193 | + if num_bins <= 1: |
| 194 | + raise ValueError("Number of bins must be greater than 1") |
| 195 | + self._num_bins = num_bins |
| 196 | + if use_kde is not None: |
| 197 | + self._use_kde = use_kde |
| 198 | + if symmetric is not None: |
| 199 | + self._symmetric = symmetric |
| 200 | + if smoothing_factor is not None: |
| 201 | + self._smoothing_factor = smoothing_factor |
| 202 | + |
| 203 | + def get_distribution_comparison(self) -> dict: |
| 204 | + if len(self._reference_buffer) < self._reference_window_size or len(self._current_buffer) < self._window_size: |
| 205 | + return {} |
| 206 | + |
| 207 | + ref_data = np.array(list(self._reference_buffer)) |
| 208 | + curr_data = np.array(list(self._current_buffer)) |
| 209 | + |
| 210 | + ref_mean, ref_std = np.mean(ref_data), np.std(ref_data) |
| 211 | + curr_mean, curr_std = np.mean(curr_data), np.std(curr_data) |
| 212 | + |
| 213 | + kl_div = self._calculate_kl_divergence() |
| 214 | + ks_statistic, ks_pvalue = stats.ks_2samp(ref_data, curr_data) |
| 215 | + |
| 216 | + return { |
| 217 | + "kl_divergence": kl_div, |
| 218 | + "reference_mean": ref_mean, |
| 219 | + "reference_std": ref_std, |
| 220 | + "current_mean": curr_mean, |
| 221 | + "current_std": curr_std, |
| 222 | + "mean_difference": abs(curr_mean - ref_mean), |
| 223 | + "std_ratio": curr_std / ref_std if ref_std > 0 else float("inf"), |
| 224 | + "ks_statistic": ks_statistic, |
| 225 | + "ks_pvalue": ks_pvalue, |
| 226 | + } |
| 227 | + |
| 228 | + def analyze_distributions(self) -> dict: |
| 229 | + if len(self._reference_buffer) < self._reference_window_size or len(self._current_buffer) < self._window_size: |
| 230 | + return {} |
| 231 | + |
| 232 | + ref_data = np.array(list(self._reference_buffer)) |
| 233 | + curr_data = np.array(list(self._current_buffer)) |
| 234 | + |
| 235 | + comparison = self.get_distribution_comparison() |
| 236 | + |
| 237 | + ref_entropy = stats.entropy(np.histogram(ref_data, bins=self._num_bins)[0] + self._smoothing_factor) |
| 238 | + curr_entropy = stats.entropy(np.histogram(curr_data, bins=self._num_bins)[0] + self._smoothing_factor) |
| 239 | + |
| 240 | + quantiles = [0.25, 0.5, 0.75] |
| 241 | + ref_quantiles = np.quantile(ref_data, quantiles) |
| 242 | + curr_quantiles = np.quantile(curr_data, quantiles) |
| 243 | + |
| 244 | + return { |
| 245 | + **comparison, |
| 246 | + "reference_entropy": ref_entropy, |
| 247 | + "current_entropy": curr_entropy, |
| 248 | + "entropy_difference": abs(curr_entropy - ref_entropy), |
| 249 | + "reference_quantiles": ref_quantiles.tolist(), |
| 250 | + "current_quantiles": curr_quantiles.tolist(), |
| 251 | + "quantile_differences": (np.abs(curr_quantiles - ref_quantiles)).tolist(), |
| 252 | + } |
| 253 | + |
| 254 | + def reset(self) -> None: |
| 255 | + self._reference_buffer.clear() |
| 256 | + self._current_buffer.clear() |
| 257 | + self._kl_values.clear() |
| 258 | + self._position = 0 |
| 259 | + self._last_change_point = None |
| 260 | + self._reference_updated = False |
| 261 | + |
| 262 | + def force_reference_update(self) -> None: |
| 263 | + if len(self._current_buffer) >= self._window_size: |
| 264 | + self._update_reference_distribution() |
0 commit comments