|
| 1 | +import unittest |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import paddle |
| 5 | + |
| 6 | +import fastdeploy |
| 7 | + |
| 8 | +np.random.seed(20160703) |
| 9 | + |
| 10 | +paddle.set_default_dtype("bfloat16") |
| 11 | + |
| 12 | + |
| 13 | +class TestFusedMoE(unittest.TestCase): |
| 14 | + def setUp(self) -> None: |
| 15 | + pass |
| 16 | + |
| 17 | + def test_ffn(self): |
| 18 | + paddle.seed(10) |
| 19 | + num_rows = 2 |
| 20 | + recv_x = paddle.randn([num_rows, 4096], dtype="bfloat16").cast(paddle.float8_e4m3fn) |
| 21 | + recv_x_scale = paddle.randn([num_rows, 4096 // 128]).cast("float32") |
| 22 | + local_num_experts = 8 |
| 23 | + gate_out = paddle.randn([num_rows, local_num_experts], dtype="float32") |
| 24 | + recv_topk_idx = paddle.topk(gate_out, k=8, axis=-1)[1] |
| 25 | + recv_topk_idx[:, 3:5] = -1 |
| 26 | + recv_topk_weights = paddle.topk(gate_out, k=8, axis=-1)[0] |
| 27 | + |
| 28 | + tmp0 = [0] * local_num_experts |
| 29 | + tmp1 = [0] * local_num_experts |
| 30 | + recv_topk_idx_list = recv_topk_idx.flatten().numpy().tolist() |
| 31 | + for ele in recv_topk_idx_list: |
| 32 | + if ele >= 0: |
| 33 | + tmp0[ele] += 1 |
| 34 | + for idx in range(len(tmp1)): |
| 35 | + tmp1[idx] = (tmp0[idx] + 127) // 128 * 128 |
| 36 | + |
| 37 | + token_all_num = sum(tmp1) |
| 38 | + baseline_m_indices = paddle.zeros([token_all_num]).cast("int32") - 1 |
| 39 | + for idx in range(len(tmp1)): |
| 40 | + start = sum(tmp1[:idx]) |
| 41 | + baseline_m_indices[start : start + tmp0[idx]] = idx |
| 42 | + |
| 43 | + tmp0 = paddle.to_tensor(tmp0).cast("int32") |
| 44 | + tmp1 = paddle.to_tensor(tmp1).cast("int32") |
| 45 | + |
| 46 | + ( |
| 47 | + permute_input, |
| 48 | + permute_scale, |
| 49 | + permute_indices_per_token, |
| 50 | + recv_num_tokens_per_expert_list_cumsum, |
| 51 | + recv_num_tokens_per_expert_list_padded_cumsum, |
| 52 | + dst_weights, |
| 53 | + dst_indices, |
| 54 | + cumsum_idx_gpu, |
| 55 | + m_indices, |
| 56 | + ) = fastdeploy.model_executor.ops.gpu.ep_moe_expert_dispatch_fp8( |
| 57 | + recv_x, |
| 58 | + recv_x_scale, |
| 59 | + recv_topk_idx, |
| 60 | + recv_topk_weights, |
| 61 | + tmp0, |
| 62 | + tmp1, |
| 63 | + True, # use_in_ep |
| 64 | + token_all_num, |
| 65 | + ) |
| 66 | + assert (m_indices - baseline_m_indices).abs().sum().item() == 0 |
| 67 | + for i in range(recv_x.shape[0]): |
| 68 | + for j in range(local_num_experts): |
| 69 | + dst_pos = permute_indices_per_token[j, i].item() |
| 70 | + if dst_pos >= 0: |
| 71 | + |
| 72 | + a = recv_x[i].cast("float32") |
| 73 | + b = permute_input[dst_pos].cast("float32") |
| 74 | + assert (a - b).abs().max().item() == 0 |
| 75 | + |
| 76 | + def haha(): |
| 77 | + for i in range(100): |
| 78 | + fastdeploy.model_executor.ops.gpu.ep_moe_expert_dispatch_fp8( |
| 79 | + recv_x, |
| 80 | + recv_x_scale, |
| 81 | + recv_topk_idx, |
| 82 | + recv_topk_weights, |
| 83 | + tmp0, |
| 84 | + tmp1, |
| 85 | + True, # use_in_ep |
| 86 | + token_all_num, |
| 87 | + ) |
| 88 | + |
| 89 | + num_tests = 20 |
| 90 | + |
| 91 | + start_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)] |
| 92 | + end_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)] |
| 93 | + for i in range(num_tests): |
| 94 | + start_events[i].record() |
| 95 | + |
| 96 | + haha() |
| 97 | + |
| 98 | + end_events[i].record() |
| 99 | + paddle.device.cuda.synchronize() |
| 100 | + |
| 101 | + times = np.array([round(s.elapsed_time(e), 1) for s, e in zip(start_events, end_events)])[1:] |
| 102 | + print(times[-5:]) |
| 103 | + |
| 104 | + |
| 105 | +if __name__ == "__main__": |
| 106 | + unittest.main() |
0 commit comments