Skip to content

Commit 7f13242

Browse files
committed
Fix some typos
1 parent 062043b commit 7f13242

File tree

3 files changed

+19
-19
lines changed

3 files changed

+19
-19
lines changed

NormalizModule.cpp

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -236,7 +236,7 @@ static bool PyNumberToNmz(PyObject*, mpz_class&);
236236
static bool PyNumberToNmz(PyObject* in, mpq_class& out)
237237
{
238238
if (PyFloat_Check(in)) {
239-
throw PyNormalizInputException("PyFloat not allowed in PyNormaliz input. Must be ecoded as string.");
239+
throw PyNormalizInputException("PyFloat not allowed in PyNormaliz input. Must be encoded as string.");
240240
return true;
241241
}
242242
#if PY_MAJOR_VERSION < 3
@@ -1674,7 +1674,7 @@ properties are available. Here are some special outputs that might differ from
16741674
Normaliz:
16751675
* HilbertSeries and WeightedEhrhartSeries
16761676
The returned object is a list with three entries: The first one describes
1677-
the numerator of the hilbert series, the second one the denominator, and the
1677+
the numerator of the Hilbert series, the second one the denominator, and the
16781678
last one is the shift. If you pass the HSOP option, output will be done in
16791679
HSOP format.
16801680
* Grading
@@ -1747,7 +1747,7 @@ _NmzResultImpl(Cone< Integer >* C, PyObject* prop_obj, const void* nf = nullptr)
17471747
return NmzWeightedEhrhartSeriesToPyList( C->getWeightedEhrhartSeries());
17481748

17491749
// though Grading has the return type vector<Integer> we make it
1750-
// a complex struture within PyNormaliz since we want to combine it
1750+
// a complex structure within PyNormaliz since we want to combine it
17511751
// with the grading denominator
17521752
case libnormaliz::ConeProperty::Grading: {
17531753
vector< Integer > grad = C->getGrading();
@@ -2127,7 +2127,7 @@ static PyObject* NmzSetPolynomial(PyObject* self, PyObject* args)
21272127
PyObject* poly_pi = PyTuple_GetItem(args, 1);
21282128

21292129
if(!string_check(poly_pi)){
2130-
PyErr_SetString(PyNormaliz_cppError, "Polynomual must be given as a string");
2130+
PyErr_SetString(PyNormaliz_cppError, "Polynomial must be given as a string");
21312131
return NULL;
21322132
}
21332133
TempSignalHandler tmpHandler1; // use custom signal handler
@@ -2179,7 +2179,7 @@ static PyObject* NmzSetPolynomialEquations(PyObject* self, PyObject* args)
21792179
vector<string> PolyEquations;
21802180
for(size_t i = 0; i < nr_polys; ++i){
21812181
if(!string_check(PyList_GetItem(polys_py,i))) {
2182-
PyErr_SetString(PyNormaliz_cppError, "Polynomual must be given as a string");
2182+
PyErr_SetString(PyNormaliz_cppError, "Polynomial must be given as a string");
21832183
return NULL;
21842184
}
21852185
string equ = PyUnicodeToString( PyList_GetItem(polys_py,i));
@@ -2231,7 +2231,7 @@ static PyObject* NmzSetPolynomialInequalities(PyObject* self, PyObject* args)
22312231
vector<string> PolyInequalities;
22322232
for(size_t i = 0; i < nr_polys; ++i){
22332233
if(!string_check(PyList_GetItem(polys_py,i))) {
2234-
PyErr_SetString(PyNormaliz_cppError, "Polynomual must be given as a string");
2234+
PyErr_SetString(PyNormaliz_cppError, "Polynomial must be given as a string");
22352235
return NULL;
22362236
}
22372237
string inequ = PyUnicodeToString( PyList_GetItem(polys_py,i));
@@ -2457,7 +2457,7 @@ static PyObject* NmzSymmetrizedCone(PyObject* self, PyObject* args)
24572457

24582458
/***************************************************************************
24592459
*
2460-
* Get expanded hilbert series
2460+
* Get expanded Hilbert series
24612461
*
24622462
***************************************************************************/
24632463

@@ -2834,7 +2834,7 @@ static PyObject* NmzFieldGenName(PyObject* self, PyObject* args)
28342834

28352835
#endif
28362836

2837-
return NULL; // to kmake gcc happy
2837+
return NULL; // to make gcc happy
28382838

28392839
FUNC_END
28402840
}

PyNormaliz.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ def our_float_handler(x):
150150

151151
def PrettyPolynomialTuple(numCoefficients, denCoefficients):
152152
"""
153-
Strings for numerator and denominator of the a hilbert series.
153+
Strings for numerator and denominator of the a Hilbert series.
154154
155155
Parameters
156156
----------
@@ -236,7 +236,7 @@ def getDenominator(coefficients):
236236

237237
def PrintPrettyHilbertSeries(numCoefficients, denCoefficients):
238238
"""
239-
Make a pretty hilbert series string
239+
Make a pretty Hilbert series string
240240
241241
Parameters
242242
----------

README.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -5,17 +5,17 @@
55

66
PyNormaliz provides an interface to [Normaliz](https://www.normaliz.uni-osnabrueck.de) via libNormaliz.
77
It offers the complete functionality of Normaliz, and can be used interactively from python.
8-
For a first example, see [this introduction](doc/PyNormaliz_Tutorial.pdf) by Richard Sieg (Slighty outdated: for the installation follow the instructions below).
8+
For a first example, see [this introduction](doc/PyNormaliz_Tutorial.pdf) by Richard Sieg (Slightly outdated: for the installation follow the instructions below).
99

10-
A full documentation is conatined in [Appendix E](doc/PyNormaliz.pdf) of the Normaliz manial.
10+
A full documentation is contained in [Appendix E](doc/PyNormaliz.pdf) of the Normaliz manual.
1111

1212

1313
## Requirements
1414

1515
* python 3.4 or higher
1616
* Normaliz 3.9.0 or higher <https://github.com/Normaliz/Normaliz/releases>
1717

18-
The source packages of the Normaliz realeases contain PyNormaliz.
18+
The source packages of the Normaliz releases contain PyNormaliz.
1919

2020
## Installation
2121

@@ -53,7 +53,7 @@ returns what its name says:
5353

5454
[[0, 1], [1, 0]]
5555

56-
is the matrix of the two Hilbert basis vectors. The ouput matrices of PyNormaliz can be used also in Normaliz input files.
56+
is the matrix of the two Hilbert basis vectors. The output matrices of PyNormaliz can be used also in Normaliz input files.
5757

5858
One can pass options to the compute functions as in
5959

@@ -63,7 +63,7 @@ Note that some Normaliz output types must be specially encoded for python. Our H
6363

6464
[[1], [1, 1], 0]
6565

66-
to be read as follows: [1] is the numerator polynomial, [1,1] is the vector of exponents of t that occur in the denominator, which is (1-t)(1-t) in our case, and 0 is the shift. So the Hilbert series is given by the rational function 1/(1-t)(1-t). (Aoso see ee [this introduction](doc/PyNormaliz_Tutorial.pdf).) But we can use
66+
to be read as follows: [1] is the numerator polynomial, [1,1] is the vector of exponents of t that occur in the denominator, which is (1-t)(1-t) in our case, and 0 is the shift. So the Hilbert series is given by the rational function 1/(1-t)(1-t). (Also see [this introduction](doc/PyNormaliz_Tutorial.pdf).) But we can use
6767

6868
print_series(C.HilbertSeries(HSOP = True))
6969

@@ -74,7 +74,7 @@ with the result
7474
(1 - t)^2
7575

7676

77-
One can also compute several data simultaneously and specify options ("PrimalMode" only added as an example, not because ot is particularly useful here):
77+
One can also compute several data simultaneously and specify options ("PrimalMode" only added as an example, not because it is particularly useful here):
7878

7979
C.Compute("LatticePoints", "Volume", "PrimalMode")
8080

@@ -94,7 +94,7 @@ with the expected value
9494

9595
'1.4142'
9696

97-
Floating point numbers are formatted with 4 decimal places and returned as strings (may change). If you want the euclideal volume at the maximum floating point precision, you can use the low level interface which is intermediate between the class Cone and libnormaliz:
97+
Floating point numbers are formatted with 4 decimal places and returned as strings (may change). If you want the euclidean volume at the maximum floating point precision, you can use the low level interface which is intermediate between the class Cone and libnormaliz:
9898

9999
NmzResult(C.cone,"EuclideanVolume")
100100
1.4142135623730951
@@ -145,10 +145,10 @@ computes the intersection of two cones. So
145145
C2 = Cone(cone=[[1,1],[1,3]])
146146
intersection(C1,C2).ExtremeRays()
147147

148-
yeilds the result
148+
yields the result
149149

150150
[[1, 1], [1, 2]]
151151

152-
If you want to see what Normaliz is doing (especually in longer computations) activate the terminal output by
152+
If you want to see what Normaliz is doing (especially in longer computations) activate the terminal output by
153153

154154
C.setVerbose(True)

0 commit comments

Comments
 (0)