Skip to content

Commit 39fe010

Browse files
committed
Merge branch 'master' of github.com:Normaliz/PyNormaliz
# Conflicts: # README.md
2 parents 8c70f1c + f0357ac commit 39fe010

File tree

3 files changed

+16
-16
lines changed

3 files changed

+16
-16
lines changed

NormalizModule.cpp

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -237,7 +237,7 @@ static bool PyNumberToNmz(PyObject*, mpz_class&);
237237
static bool PyNumberToNmz(PyObject* in, mpq_class& out)
238238
{
239239
if (PyFloat_Check(in)) {
240-
throw PyNormalizInputException("PyFloat not allowed in PyNormaliz input. Must be ecoded as string.");
240+
throw PyNormalizInputException("PyFloat not allowed in PyNormaliz input. Must be encoded as string.");
241241
return true;
242242
}
243243
#if PY_MAJOR_VERSION < 3
@@ -1695,7 +1695,7 @@ properties are available. Here are some special outputs that might differ from
16951695
Normaliz:
16961696
* HilbertSeries and WeightedEhrhartSeries
16971697
The returned object is a list with three entries: The first one describes
1698-
the numerator of the hilbert series, the second one the denominator, and the
1698+
the numerator of the Hilbert series, the second one the denominator, and the
16991699
last one is the shift. If you pass the HSOP option, output will be done in
17001700
HSOP format.
17011701
* Grading
@@ -1768,7 +1768,7 @@ _NmzResultImpl(Cone< Integer >* C, PyObject* prop_obj, const void* nf = nullptr)
17681768
return NmzWeightedEhrhartSeriesToPyList( C->getWeightedEhrhartSeries());
17691769

17701770
// though Grading has the return type vector<Integer> we make it
1771-
// a complex struture within PyNormaliz since we want to combine it
1771+
// a complex structure within PyNormaliz since we want to combine it
17721772
// with the grading denominator
17731773
case libnormaliz::ConeProperty::Grading: {
17741774
vector< Integer > grad = C->getGrading();
@@ -2163,7 +2163,7 @@ static PyObject* NmzSetPolynomial(PyObject* self, PyObject* args)
21632163
PyObject* poly_pi = PyTuple_GetItem(args, 1);
21642164

21652165
if(!string_check(poly_pi)){
2166-
PyErr_SetString(PyNormaliz_cppError, "Polynomual must be given as a string");
2166+
PyErr_SetString(PyNormaliz_cppError, "Polynomial must be given as a string");
21672167
return NULL;
21682168
}
21692169
TempSignalHandler tmpHandler1; // use custom signal handler
@@ -2215,7 +2215,7 @@ static PyObject* NmzSetPolynomialEquations(PyObject* self, PyObject* args)
22152215
vector<string> PolyEquations;
22162216
for(size_t i = 0; i < nr_polys; ++i){
22172217
if(!string_check(PyList_GetItem(polys_py,i))) {
2218-
PyErr_SetString(PyNormaliz_cppError, "Polynomual must be given as a string");
2218+
PyErr_SetString(PyNormaliz_cppError, "Polynomial must be given as a string");
22192219
return NULL;
22202220
}
22212221
string equ = PyUnicodeToString( PyList_GetItem(polys_py,i));
@@ -2267,7 +2267,7 @@ static PyObject* NmzSetPolynomialInequalities(PyObject* self, PyObject* args)
22672267
vector<string> PolyInequalities;
22682268
for(size_t i = 0; i < nr_polys; ++i){
22692269
if(!string_check(PyList_GetItem(polys_py,i))) {
2270-
PyErr_SetString(PyNormaliz_cppError, "Polynomual must be given as a string");
2270+
PyErr_SetString(PyNormaliz_cppError, "Polynomial must be given as a string");
22712271
return NULL;
22722272
}
22732273
string inequ = PyUnicodeToString( PyList_GetItem(polys_py,i));
@@ -2493,7 +2493,7 @@ static PyObject* NmzSymmetrizedCone(PyObject* self, PyObject* args)
24932493

24942494
/***************************************************************************
24952495
*
2496-
* Get expanded hilbert series
2496+
* Get expanded Hilbert series
24972497
*
24982498
***************************************************************************/
24992499

@@ -2870,7 +2870,7 @@ static PyObject* NmzFieldGenName(PyObject* self, PyObject* args)
28702870

28712871
#endif
28722872

2873-
return NULL; // to kmake gcc happy
2873+
return NULL; // to make gcc happy
28742874

28752875
FUNC_END
28762876
}

PyNormaliz.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ def our_float_handler(x):
150150

151151
def PrettyPolynomialTuple(numCoefficients, denCoefficients):
152152
"""
153-
Strings for numerator and denominator of the a hilbert series.
153+
Strings for numerator and denominator of the a Hilbert series.
154154
155155
Parameters
156156
----------
@@ -236,7 +236,7 @@ def getDenominator(coefficients):
236236

237237
def PrintPrettyHilbertSeries(numCoefficients, denCoefficients):
238238
"""
239-
Make a pretty hilbert series string
239+
Make a pretty Hilbert series string
240240
241241
Parameters
242242
----------

README.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -5,17 +5,17 @@
55

66
PyNormaliz provides an interface to [Normaliz](https://www.normaliz.uni-osnabrueck.de) via libNormaliz.
77
It offers the complete functionality of Normaliz, and can be used interactively from python.
8-
For a first example, see [this introduction](doc/PyNormaliz_Tutorial.pdf) by Richard Sieg (Slighty outdated: for the installation follow the instructions below).
8+
For a first example, see [this introduction](doc/PyNormaliz_Tutorial.pdf) by Richard Sieg (Slightly outdated: for the installation follow the instructions below).
99

10-
A full documentation is conatined in [Appendix E](doc/PyNormaliz.pdf) of the Normaliz manial.
10+
A full documentation is contained in [Appendix E](doc/PyNormaliz.pdf) of the Normaliz manual.
1111

1212

1313
## Requirements
1414

1515
* python 3.4 or higher
1616
* Normaliz 3.10.2 or higher <https://github.com/Normaliz/Normaliz/releases>
1717

18-
The source packages of the Normaliz realeases contain PyNormaliz.
18+
The source packages of the Normaliz releases contain PyNormaliz.
1919

2020
## Installation
2121

@@ -53,7 +53,7 @@ returns what its name says:
5353

5454
[[0, 1], [1, 0]]
5555

56-
is the matrix of the two Hilbert basis vectors. The ouput matrices of PyNormaliz can be used also in Normaliz input files.
56+
is the matrix of the two Hilbert basis vectors. The output matrices of PyNormaliz can be used also in Normaliz input files.
5757

5858
One can pass options to the compute functions as in
5959

@@ -63,7 +63,7 @@ Note that some Normaliz output types must be specially encoded for python. Our H
6363

6464
[[1], [1, 1], 0]
6565

66-
to be read as follows: [1] is the numerator polynomial, [1,1] is the vector of exponents of t that occur in the denominator, which is (1-t)(1-t) in our case, and 0 is the shift. So the Hilbert series is given by the rational function 1/(1-t)(1-t). (Aoso see ee [this introduction](doc/PyNormaliz_Tutorial.pdf).) But we can use
66+
to be read as follows: [1] is the numerator polynomial, [1,1] is the vector of exponents of t that occur in the denominator, which is (1-t)(1-t) in our case, and 0 is the shift. So the Hilbert series is given by the rational function 1/(1-t)(1-t). (Also see [this introduction](doc/PyNormaliz_Tutorial.pdf).) But we can use
6767

6868
print_series(C.HilbertSeries(HSOP = True))
6969

@@ -74,7 +74,7 @@ with the result
7474
(1 - t)^2
7575

7676

77-
One can also compute several data simultaneously and specify options ("PrimalMode" only added as an example, not because ot is particularly useful here):
77+
One can also compute several data simultaneously and specify options ("PrimalMode" only added as an example, not because it is particularly useful here):
7878

7979
C.Compute("LatticePoints", "Volume", "PrimalMode")
8080

0 commit comments

Comments
 (0)