@@ -41,7 +41,6 @@ def __init__(self, config, queue=None):
4141 self ._spiking_layers = {}
4242 self ._input_images = None
4343 self ._binary_activation = None
44- self .avg_rate = None
4544 self ._input_spikecount = None
4645
4746 @property
@@ -142,9 +141,7 @@ def simulate(self, **kwargs):
142141 print ("Current accuracy of batch:" )
143142
144143 # Loop through simulation time.
145- self .avg_rate = 0
146144 self ._input_spikecount = 0
147- actual_num_timesteps = self ._num_timesteps
148145 for sim_step_int in range (self ._num_timesteps ):
149146 sim_step = (sim_step_int + 1 ) * self ._dt
150147 self .set_time (sim_step )
@@ -157,7 +154,6 @@ def simulate(self, **kwargs):
157154
158155 if self .config .getboolean ('simulation' , 'early_stopping' ) and \
159156 np .count_nonzero (input_b_l ) == 0 :
160- actual_num_timesteps = sim_step
161157 print ("\n Input empty: Finishing simulation {} steps early."
162158 "" .format (self ._num_timesteps - sim_step_int ))
163159 break
@@ -180,7 +176,6 @@ def simulate(self, **kwargs):
180176 if hasattr (layer , 'spiketrain' ) \
181177 and layer .spiketrain is not None :
182178 spiketrains_b_l = keras .backend .get_value (layer .spiketrain )
183- self .avg_rate += np .count_nonzero (spiketrains_b_l )
184179 if self .spiketrains_n_b_l_t is not None :
185180 self .spiketrains_n_b_l_t [i ][0 ][
186181 Ellipsis , sim_step_int ] = spiketrains_b_l
@@ -236,13 +231,6 @@ def simulate(self, **kwargs):
236231 "but {} input events were not processed. Consider "
237232 "increasing the simulation time." .format (remaining_events ))
238233
239- self .avg_rate /= self .batch_size * np .sum (self .num_neurons ) * \
240- actual_num_timesteps
241-
242- if self .spiketrains_n_b_l_t is None :
243- print ("Average spike rate: {} spikes per simulation time step."
244- "" .format (self .avg_rate ))
245-
246234 return np .cumsum (output_b_l_t , 2 )
247235
248236 def reset (self , sample_idx ):
0 commit comments