|
| 1 | +# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import os |
| 16 | +import sys |
| 17 | +import urllib.request |
| 18 | +from zipfile import ZipFile |
| 19 | +import torch |
| 20 | +from torch.utils.data import DataLoader |
| 21 | +NGC_CHECKPOINT_URLS = {} |
| 22 | +NGC_CHECKPOINT_URLS["electricity"] = "https://api.ngc.nvidia.com/v2/models/nvidia/tft_pyt_ckpt_base_eletricity_amp/versions/21.06.0/zip" |
| 23 | +NGC_CHECKPOINT_URLS["traffic"] = "https://api.ngc.nvidia.com/v2/models/nvidia/tft_pyt_ckpt_base_traffic_amp/versions/21.06.0/zip" |
| 24 | + |
| 25 | + |
| 26 | +def _download_checkpoint(checkpoint, force_reload): |
| 27 | + model_dir = os.path.join(torch.hub._get_torch_home(), 'checkpoints') |
| 28 | + if not os.path.exists(model_dir): |
| 29 | + os.makedirs(model_dir) |
| 30 | + ckpt_file = os.path.join(model_dir, os.path.basename(checkpoint)) |
| 31 | + if not os.path.exists(ckpt_file) or force_reload: |
| 32 | + sys.stderr.write('Downloading checkpoint from {}\n'.format(checkpoint)) |
| 33 | + urllib.request.urlretrieve(checkpoint, ckpt_file) |
| 34 | + with ZipFile(ckpt_file, "r") as zf: |
| 35 | + zf.extractall(path=model_dir) |
| 36 | + return os.path.join(model_dir, "checkpoint.pt") |
| 37 | + |
| 38 | +def nvidia_tft(pretrained=True, **kwargs): |
| 39 | + from .modeling import TemporalFusionTransformer |
| 40 | + """Constructs a TFT model. |
| 41 | + For detailed information on model input and output, training recipies, inference and performance |
| 42 | + visit: github.com/NVIDIA/DeepLearningExamples and/or ngc.nvidia.com |
| 43 | + Args (type[, default value]): |
| 44 | + pretrained (bool, True): If True, returns a pretrained model. |
| 45 | + dataset (str, 'electricity'): loads selected model type electricity or traffic. Defaults to electricity |
| 46 | + """ |
| 47 | + ds_type = kwargs.get("dataset", "electricity") |
| 48 | + ckpt = _download_checkpoint(NGC_CHECKPOINT_URLS[ds_type], True) |
| 49 | + state_dict = torch.load(ckpt) |
| 50 | + config = state_dict['config'] |
| 51 | + |
| 52 | + model = TemporalFusionTransformer(config) |
| 53 | + if pretrained: |
| 54 | + model.load_state_dict(state_dict['model']) |
| 55 | + model.eval() |
| 56 | + return model |
| 57 | + |
| 58 | +def nvidia_tft_data_utils(**kwargs): |
| 59 | + |
| 60 | + from .data_utils import TFTDataset |
| 61 | + from .configuration import ElectricityConfig |
| 62 | + class Processing: |
| 63 | + @staticmethod |
| 64 | + def download_data(path): |
| 65 | + if not os.path.exists(os.path.join(path, "raw")): |
| 66 | + os.makedirs(os.path.join(path, "raw"), exist_ok=True) |
| 67 | + dataset_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011_2014.txt.zip" |
| 68 | + ckpt_file = os.path.join(path, "raw/electricity.zip") |
| 69 | + if not os.path.exists(ckpt_file): |
| 70 | + sys.stderr.write('Downloading checkpoint from {}\n'.format(dataset_url)) |
| 71 | + urllib.request.urlretrieve(dataset_url, ckpt_file) |
| 72 | + with ZipFile(ckpt_file, "r") as zf: |
| 73 | + zf.extractall(path=os.path.join(path, "raw/electricity/")) |
| 74 | + |
| 75 | + @staticmethod |
| 76 | + def preprocess(path): |
| 77 | + config = ElectricityConfig() |
| 78 | + if not os.path.exists(os.path.join(path, "processed")): |
| 79 | + os.makedirs(os.path.join(path, "processed"), exist_ok=True) |
| 80 | + from data_utils import standarize_electricity as standarize |
| 81 | + from data_utils import preprocess |
| 82 | + standarize(os.path.join(path, "raw/electricity")) |
| 83 | + preprocess(os.path.join(path, "raw/electricity/standarized.csv"), os.path.join(path, "processed/electricity_bin/"), config) |
| 84 | + |
| 85 | + |
| 86 | + @staticmethod |
| 87 | + def get_batch(path): |
| 88 | + config = ElectricityConfig() |
| 89 | + test_split = TFTDataset(os.path.join(path, "processed/electricity_bin/", "test.csv"), config) |
| 90 | + data_loader = DataLoader(test_split, batch_size=16, num_workers=0) |
| 91 | + for i, batch in enumerate(data_loader): |
| 92 | + if i == 40: |
| 93 | + break |
| 94 | + return batch |
| 95 | + |
| 96 | + return Processing() |
| 97 | + |
0 commit comments