|
| 1 | +# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. |
| 2 | +# SPDX-License-Identifier: Apache-2.0 |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import sys |
| 17 | +from unittest.mock import MagicMock, Mock, patch |
| 18 | + |
| 19 | +import pytest |
| 20 | + |
| 21 | +try: |
| 22 | + import nemoguardrails.embeddings.providers.cohere |
| 23 | + |
| 24 | + COHERE_AVAILABLE = True |
| 25 | +except (ImportError, ModuleNotFoundError): |
| 26 | + COHERE_AVAILABLE = False |
| 27 | + |
| 28 | + |
| 29 | +@pytest.mark.skipif( |
| 30 | + not COHERE_AVAILABLE, reason="Cohere provider not available in this branch" |
| 31 | +) |
| 32 | +class TestCohereEmbeddingModelMocked: |
| 33 | + def test_init_with_known_model(self): |
| 34 | + mock_cohere = MagicMock() |
| 35 | + mock_client = Mock() |
| 36 | + mock_cohere.Client.return_value = mock_client |
| 37 | + |
| 38 | + with patch.dict("sys.modules", {"cohere": mock_cohere}): |
| 39 | + from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel |
| 40 | + |
| 41 | + model = CohereEmbeddingModel("embed-multilingual-v3.0") |
| 42 | + |
| 43 | + assert model.model == "embed-multilingual-v3.0" |
| 44 | + assert model.embedding_size == 1024 |
| 45 | + assert model.input_type == "search_document" |
| 46 | + assert model.client == mock_client |
| 47 | + mock_cohere.Client.assert_called_once() |
| 48 | + |
| 49 | + def test_init_with_custom_input_type(self): |
| 50 | + mock_cohere = MagicMock() |
| 51 | + mock_client = Mock() |
| 52 | + mock_cohere.Client.return_value = mock_client |
| 53 | + |
| 54 | + with patch.dict("sys.modules", {"cohere": mock_cohere}): |
| 55 | + from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel |
| 56 | + |
| 57 | + model = CohereEmbeddingModel( |
| 58 | + "embed-english-v3.0", input_type="search_query" |
| 59 | + ) |
| 60 | + |
| 61 | + assert model.model == "embed-english-v3.0" |
| 62 | + assert model.embedding_size == 1024 |
| 63 | + assert model.input_type == "search_query" |
| 64 | + |
| 65 | + def test_init_with_unknown_model(self): |
| 66 | + mock_cohere = MagicMock() |
| 67 | + mock_client = Mock() |
| 68 | + mock_cohere.Client.return_value = mock_client |
| 69 | + |
| 70 | + mock_response = Mock() |
| 71 | + mock_response.embeddings = [[0.1] * 512] |
| 72 | + mock_client.embed.return_value = mock_response |
| 73 | + |
| 74 | + with patch.dict("sys.modules", {"cohere": mock_cohere}): |
| 75 | + from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel |
| 76 | + |
| 77 | + model = CohereEmbeddingModel("custom-unknown-model") |
| 78 | + |
| 79 | + assert model.model == "custom-unknown-model" |
| 80 | + assert model.embedding_size == 512 |
| 81 | + mock_client.embed.assert_called_once_with( |
| 82 | + texts=["test"], |
| 83 | + model="custom-unknown-model", |
| 84 | + input_type="search_document", |
| 85 | + ) |
| 86 | + |
| 87 | + def test_import_error_when_cohere_not_installed(self): |
| 88 | + with patch.dict("sys.modules", {"cohere": None}): |
| 89 | + with pytest.raises(ImportError, match="Could not import cohere"): |
| 90 | + if "nemoguardrails.embeddings.providers.cohere" in sys.modules: |
| 91 | + del sys.modules["nemoguardrails.embeddings.providers.cohere"] |
| 92 | + |
| 93 | + from nemoguardrails.embeddings.providers.cohere import ( |
| 94 | + CohereEmbeddingModel, |
| 95 | + ) |
| 96 | + |
| 97 | + CohereEmbeddingModel("embed-v4.0") |
| 98 | + |
| 99 | + def test_encode_success(self): |
| 100 | + mock_cohere = MagicMock() |
| 101 | + mock_client = Mock() |
| 102 | + mock_cohere.Client.return_value = mock_client |
| 103 | + |
| 104 | + mock_response = Mock() |
| 105 | + expected_embeddings = [ |
| 106 | + [0.1, 0.2, 0.3], |
| 107 | + [0.4, 0.5, 0.6], |
| 108 | + ] |
| 109 | + mock_response.embeddings = expected_embeddings |
| 110 | + mock_client.embed.return_value = mock_response |
| 111 | + |
| 112 | + with patch.dict("sys.modules", {"cohere": mock_cohere}): |
| 113 | + from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel |
| 114 | + |
| 115 | + model = CohereEmbeddingModel("embed-english-light-v3.0") |
| 116 | + documents = ["hello world", "test document"] |
| 117 | + result = model.encode(documents) |
| 118 | + |
| 119 | + assert result == expected_embeddings |
| 120 | + mock_client.embed.assert_called_with( |
| 121 | + texts=documents, |
| 122 | + model="embed-english-light-v3.0", |
| 123 | + input_type="search_document", |
| 124 | + ) |
| 125 | + |
| 126 | + def test_encode_with_custom_input_type(self): |
| 127 | + mock_cohere = MagicMock() |
| 128 | + mock_client = Mock() |
| 129 | + mock_cohere.Client.return_value = mock_client |
| 130 | + |
| 131 | + mock_response = Mock() |
| 132 | + expected_embeddings = [[0.1, 0.2]] |
| 133 | + mock_response.embeddings = expected_embeddings |
| 134 | + mock_client.embed.return_value = mock_response |
| 135 | + |
| 136 | + with patch.dict("sys.modules", {"cohere": mock_cohere}): |
| 137 | + from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel |
| 138 | + |
| 139 | + model = CohereEmbeddingModel("embed-v4.0", input_type="classification") |
| 140 | + documents = ["classify this"] |
| 141 | + result = model.encode(documents) |
| 142 | + |
| 143 | + assert result == expected_embeddings |
| 144 | + mock_client.embed.assert_called_with( |
| 145 | + texts=documents, model="embed-v4.0", input_type="classification" |
| 146 | + ) |
| 147 | + |
| 148 | + @pytest.mark.asyncio |
| 149 | + async def test_encode_async_success(self): |
| 150 | + mock_cohere = MagicMock() |
| 151 | + mock_client = Mock() |
| 152 | + mock_cohere.Client.return_value = mock_client |
| 153 | + |
| 154 | + mock_response = Mock() |
| 155 | + expected_embeddings = [[0.1, 0.2, 0.3]] |
| 156 | + mock_response.embeddings = expected_embeddings |
| 157 | + mock_client.embed.return_value = mock_response |
| 158 | + |
| 159 | + with patch.dict("sys.modules", {"cohere": mock_cohere}): |
| 160 | + from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel |
| 161 | + |
| 162 | + model = CohereEmbeddingModel("embed-multilingual-v3.0") |
| 163 | + documents = ["async test"] |
| 164 | + result = await model.encode_async(documents) |
| 165 | + |
| 166 | + assert result == expected_embeddings |
| 167 | + mock_client.embed.assert_called_once() |
| 168 | + |
| 169 | + def test_init_with_api_key_kwarg(self): |
| 170 | + mock_cohere = MagicMock() |
| 171 | + mock_client = Mock() |
| 172 | + mock_cohere.Client.return_value = mock_client |
| 173 | + |
| 174 | + with patch.dict("sys.modules", {"cohere": mock_cohere}): |
| 175 | + from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel |
| 176 | + |
| 177 | + model = CohereEmbeddingModel("embed-v4.0", api_key="test-key-123") |
| 178 | + |
| 179 | + mock_cohere.Client.assert_called_once_with(api_key="test-key-123") |
| 180 | + |
| 181 | + def test_all_predefined_models(self): |
| 182 | + mock_cohere = MagicMock() |
| 183 | + mock_client = Mock() |
| 184 | + mock_cohere.Client.return_value = mock_client |
| 185 | + |
| 186 | + models_to_test = { |
| 187 | + "embed-v4.0": 1536, |
| 188 | + "embed-english-v3.0": 1024, |
| 189 | + "embed-english-light-v3.0": 384, |
| 190 | + "embed-multilingual-v3.0": 1024, |
| 191 | + "embed-multilingual-light-v3.0": 384, |
| 192 | + } |
| 193 | + |
| 194 | + with patch.dict("sys.modules", {"cohere": mock_cohere}): |
| 195 | + from nemoguardrails.embeddings.providers.cohere import CohereEmbeddingModel |
| 196 | + |
| 197 | + for model_name, expected_size in models_to_test.items(): |
| 198 | + model = CohereEmbeddingModel(model_name) |
| 199 | + assert model.embedding_size == expected_size |
| 200 | + assert model.model == model_name |
| 201 | + |
| 202 | + |
| 203 | +class TestOpenAIEmbeddingModelMocked: |
| 204 | + def test_init_with_known_model(self): |
| 205 | + mock_openai = MagicMock() |
| 206 | + mock_openai.__version__ = "1.0.0" |
| 207 | + mock_client = Mock() |
| 208 | + mock_openai.OpenAI.return_value = mock_client |
| 209 | + |
| 210 | + with patch.dict("sys.modules", {"openai": mock_openai}): |
| 211 | + from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel |
| 212 | + |
| 213 | + model = OpenAIEmbeddingModel("text-embedding-3-small") |
| 214 | + |
| 215 | + assert model.model == "text-embedding-3-small" |
| 216 | + assert model.embedding_size == 1536 |
| 217 | + assert model.client == mock_client |
| 218 | + mock_openai.OpenAI.assert_called_once() |
| 219 | + |
| 220 | + def test_init_with_unknown_model(self): |
| 221 | + mock_openai = MagicMock() |
| 222 | + mock_openai.__version__ = "1.0.0" |
| 223 | + mock_client = Mock() |
| 224 | + mock_openai.OpenAI.return_value = mock_client |
| 225 | + |
| 226 | + mock_response = Mock() |
| 227 | + mock_record = Mock() |
| 228 | + mock_record.embedding = [0.1] * 2048 |
| 229 | + mock_response.data = [mock_record] |
| 230 | + mock_client.embeddings.create.return_value = mock_response |
| 231 | + |
| 232 | + with patch.dict("sys.modules", {"openai": mock_openai}): |
| 233 | + from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel |
| 234 | + |
| 235 | + model = OpenAIEmbeddingModel("custom-unknown-model") |
| 236 | + |
| 237 | + assert model.model == "custom-unknown-model" |
| 238 | + assert model.embedding_size == 2048 |
| 239 | + mock_client.embeddings.create.assert_called_once_with( |
| 240 | + input=["test"], model="custom-unknown-model" |
| 241 | + ) |
| 242 | + |
| 243 | + def test_import_error_when_openai_not_installed(self): |
| 244 | + with patch.dict("sys.modules", {"openai": None}): |
| 245 | + with pytest.raises(ImportError, match="Could not import openai"): |
| 246 | + if "nemoguardrails.embeddings.providers.openai" in sys.modules: |
| 247 | + del sys.modules["nemoguardrails.embeddings.providers.openai"] |
| 248 | + |
| 249 | + from nemoguardrails.embeddings.providers.openai import ( |
| 250 | + OpenAIEmbeddingModel, |
| 251 | + ) |
| 252 | + |
| 253 | + OpenAIEmbeddingModel("text-embedding-3-small") |
| 254 | + |
| 255 | + def test_old_version_error(self): |
| 256 | + mock_openai = MagicMock() |
| 257 | + mock_openai.__version__ = "0.28.0" |
| 258 | + |
| 259 | + with patch.dict("sys.modules", {"openai": mock_openai}): |
| 260 | + from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel |
| 261 | + |
| 262 | + with pytest.raises(RuntimeError, match="openai<1.0.0"): |
| 263 | + OpenAIEmbeddingModel("text-embedding-3-small") |
| 264 | + |
| 265 | + def test_encode_success(self): |
| 266 | + mock_openai = MagicMock() |
| 267 | + mock_openai.__version__ = "1.0.0" |
| 268 | + mock_client = Mock() |
| 269 | + mock_openai.OpenAI.return_value = mock_client |
| 270 | + |
| 271 | + mock_response = Mock() |
| 272 | + mock_record1 = Mock() |
| 273 | + expected_embedding1 = [0.1, 0.2, 0.3] |
| 274 | + mock_record1.embedding = expected_embedding1 |
| 275 | + mock_record2 = Mock() |
| 276 | + expected_embedding2 = [0.4, 0.5, 0.6] |
| 277 | + mock_record2.embedding = expected_embedding2 |
| 278 | + mock_response.data = [mock_record1, mock_record2] |
| 279 | + mock_client.embeddings.create.return_value = mock_response |
| 280 | + |
| 281 | + with patch.dict("sys.modules", {"openai": mock_openai}): |
| 282 | + from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel |
| 283 | + |
| 284 | + model = OpenAIEmbeddingModel("text-embedding-ada-002") |
| 285 | + documents = ["hello world", "test document"] |
| 286 | + result = model.encode(documents) |
| 287 | + |
| 288 | + assert result == [expected_embedding1, expected_embedding2] |
| 289 | + mock_client.embeddings.create.assert_called_with( |
| 290 | + input=documents, model="text-embedding-ada-002" |
| 291 | + ) |
| 292 | + |
| 293 | + @pytest.mark.asyncio |
| 294 | + async def test_encode_async_success(self): |
| 295 | + mock_openai = MagicMock() |
| 296 | + mock_openai.__version__ = "1.0.0" |
| 297 | + mock_client = Mock() |
| 298 | + mock_openai.OpenAI.return_value = mock_client |
| 299 | + |
| 300 | + mock_response = Mock() |
| 301 | + mock_record = Mock() |
| 302 | + expected_embedding = [0.1, 0.2, 0.3] |
| 303 | + mock_record.embedding = expected_embedding |
| 304 | + mock_response.data = [mock_record] |
| 305 | + mock_client.embeddings.create.return_value = mock_response |
| 306 | + |
| 307 | + with patch.dict("sys.modules", {"openai": mock_openai}): |
| 308 | + from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel |
| 309 | + |
| 310 | + model = OpenAIEmbeddingModel("text-embedding-3-small") |
| 311 | + documents = ["async test"] |
| 312 | + result = await model.encode_async(documents) |
| 313 | + |
| 314 | + assert result == [expected_embedding] |
| 315 | + mock_client.embeddings.create.assert_called_once() |
| 316 | + |
| 317 | + def test_init_with_api_key_kwarg(self): |
| 318 | + mock_openai = MagicMock() |
| 319 | + mock_openai.__version__ = "1.0.0" |
| 320 | + mock_client = Mock() |
| 321 | + mock_openai.OpenAI.return_value = mock_client |
| 322 | + |
| 323 | + with patch.dict("sys.modules", {"openai": mock_openai}): |
| 324 | + from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel |
| 325 | + |
| 326 | + model = OpenAIEmbeddingModel( |
| 327 | + "text-embedding-3-small", api_key="test-key-123" |
| 328 | + ) |
| 329 | + |
| 330 | + mock_openai.OpenAI.assert_called_once_with(api_key="test-key-123") |
| 331 | + |
| 332 | + def test_all_predefined_models(self): |
| 333 | + mock_openai = MagicMock() |
| 334 | + mock_openai.__version__ = "1.0.0" |
| 335 | + mock_client = Mock() |
| 336 | + mock_openai.OpenAI.return_value = mock_client |
| 337 | + |
| 338 | + models_to_test = { |
| 339 | + "text-embedding-ada-002": 1536, |
| 340 | + "text-embedding-3-small": 1536, |
| 341 | + "text-embedding-3-large": 3072, |
| 342 | + } |
| 343 | + |
| 344 | + with patch.dict("sys.modules", {"openai": mock_openai}): |
| 345 | + from nemoguardrails.embeddings.providers.openai import OpenAIEmbeddingModel |
| 346 | + |
| 347 | + for model_name, expected_size in models_to_test.items(): |
| 348 | + model = OpenAIEmbeddingModel(model_name) |
| 349 | + assert model.embedding_size == expected_size |
| 350 | + assert model.model == model_name |
0 commit comments