|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import os\n", |
| 10 | + "import tensorflow as tf\n", |
| 11 | + "from transformers import BertTokenizer, TFBertModel\n", |
| 12 | + "\n", |
| 13 | + "import numpy as np\n", |
| 14 | + "import pandas as pd\n", |
| 15 | + "\n", |
| 16 | + "from tensorflow.keras.preprocessing.sequence import pad_sequences\n", |
| 17 | + "from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint\n", |
| 18 | + "\n", |
| 19 | + "import matplotlib.pyplot as plt" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": null, |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "# 시각화\n", |
| 29 | + "\n", |
| 30 | + "def plot_graphs(history, string):\n", |
| 31 | + " plt.plot(history.history[string])\n", |
| 32 | + " plt.plot(history.history['val_'+string], '')\n", |
| 33 | + " plt.xlabel(\"Epochs\")\n", |
| 34 | + " plt.ylabel(string)\n", |
| 35 | + " plt.legend([string, 'val_'+string])\n", |
| 36 | + " plt.show()" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": null, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "#random seed 고정\n", |
| 46 | + "\n", |
| 47 | + "tf.random.set_seed(1234)\n", |
| 48 | + "np.random.seed(1234)\n", |
| 49 | + "\n", |
| 50 | + "# BASE PARAM\n", |
| 51 | + "\n", |
| 52 | + "BATCH_SIZE = 32\n", |
| 53 | + "NUM_EPOCHS = 3\n", |
| 54 | + "MAX_LEN = 24 * 2 # Average total * 2\n", |
| 55 | + "\n", |
| 56 | + "DATA_IN_PATH = './data_in/KOR'\n", |
| 57 | + "DATA_OUT_PATH = \"./data_out/KOR\"" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "markdown", |
| 62 | + "metadata": {}, |
| 63 | + "source": [ |
| 64 | + "# KorNLI Dataset\n", |
| 65 | + "\n", |
| 66 | + "Data from Kakaobrain: https://github.com/kakaobrain/KorNLUDatasets" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": null, |
| 72 | + "metadata": {}, |
| 73 | + "outputs": [], |
| 74 | + "source": [ |
| 75 | + "# Load Train dataset\n", |
| 76 | + "\n", |
| 77 | + "TRAIN_SNLI_DF = os.path.join(DATA_IN_PATH, 'KorNLI', 'snli_1.0_train.kor.tsv')\n", |
| 78 | + "TRAIN_XNLI_DF = os.path.join(DATA_IN_PATH, 'KorNLI', 'multinli.train.ko.tsv')\n", |
| 79 | + "DEV_XNLI_DF = os.path.join(DATA_IN_PATH, 'KorNLI', 'xnli.dev.ko.tsv')\n", |
| 80 | + "\n", |
| 81 | + "train_data_snli = pd.read_csv(TRAIN_SNLI_DF, header=0, delimiter = '\\t', quoting = 3)\n", |
| 82 | + "train_data_xnli = pd.read_csv(TRAIN_XNLI_DF, header=0, delimiter = '\\t', quoting = 3)\n", |
| 83 | + "dev_data_xnli = pd.read_csv(DEV_XNLI_DF, header=0, delimiter = '\\t', quoting = 3)\n", |
| 84 | + "\n", |
| 85 | + "train_data_snli_xnli = train_data_snli.append(train_data_xnli)\n", |
| 86 | + "train_data_snli_xnli = train_data_snli_xnli.dropna()\n", |
| 87 | + "train_data_snli_xnli = train_data_snli_xnli.reset_index()\n", |
| 88 | + "\n", |
| 89 | + "dev_data_xnli = dev_data_xnli.dropna()\n", |
| 90 | + "\n", |
| 91 | + "print(\"Total # dataset: train - {}, dev - {}\".format(len(train_data_snli_xnli), len(dev_data_xnli)))" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "code", |
| 96 | + "execution_count": null, |
| 97 | + "metadata": {}, |
| 98 | + "outputs": [], |
| 99 | + "source": [ |
| 100 | + "# Bert Tokenizer\n", |
| 101 | + "\n", |
| 102 | + "# 참조: https://huggingface.co/transformers/main_classes/tokenizer.html?highlight=encode_plus#transformers.PreTrainedTokenizer.encode_plus\n", |
| 103 | + "\n", |
| 104 | + "tokenizer = BertTokenizer.from_pretrained(\"bert-base-multilingual-cased\", cache_dir='bert_ckpt', do_lower_case=False)\n", |
| 105 | + "\n", |
| 106 | + "def bert_tokenizer_v2(sent1, sent2, MAX_LEN):\n", |
| 107 | + " \n", |
| 108 | + " # For Two setenece input\n", |
| 109 | + " \n", |
| 110 | + " encoded_dict = tokenizer.encode_plus(\n", |
| 111 | + " text = sent1,\n", |
| 112 | + " text_pair = sent2,\n", |
| 113 | + " add_special_tokens = True, # Add '[CLS]' and '[SEP]'\n", |
| 114 | + " max_length = MAX_LEN, # Pad & truncate all sentences.\n", |
| 115 | + " pad_to_max_length = True,\n", |
| 116 | + " return_attention_mask = True # Construct attn. masks.\n", |
| 117 | + " \n", |
| 118 | + " )\n", |
| 119 | + " \n", |
| 120 | + " input_id = encoded_dict['input_ids']\n", |
| 121 | + " attention_mask = encoded_dict['attention_mask'] # And its attention mask (simply differentiates padding from non-padding).\n", |
| 122 | + " token_type_id = encoded_dict['token_type_ids'] # differentiate two sentences\n", |
| 123 | + " \n", |
| 124 | + " return input_id, attention_mask, token_type_id" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": null, |
| 130 | + "metadata": {}, |
| 131 | + "outputs": [], |
| 132 | + "source": [ |
| 133 | + "input_ids = []\n", |
| 134 | + "attention_masks = []\n", |
| 135 | + "token_type_ids = []\n", |
| 136 | + "\n", |
| 137 | + "for sent1, sent2 in zip(train_data_snli_xnli['sentence1'], train_data_snli_xnli['sentence2']):\n", |
| 138 | + " try:\n", |
| 139 | + " input_id, attention_mask, token_type_id = bert_tokenizer_v2(sent1, sent2, MAX_LEN)\n", |
| 140 | + "\n", |
| 141 | + " input_ids.append(input_id)\n", |
| 142 | + " attention_masks.append(attention_mask)\n", |
| 143 | + " token_type_ids.append(token_type_id)\n", |
| 144 | + " except Exception as e:\n", |
| 145 | + " print(e)\n", |
| 146 | + " print(sent1, sent2)\n", |
| 147 | + " pass\n", |
| 148 | + " \n", |
| 149 | + "train_snli_xnli_input_ids = np.array(input_ids, dtype=int)\n", |
| 150 | + "train_snli_xnli_attention_masks = np.array(attention_masks, dtype=int)\n", |
| 151 | + "train_snli_xnli_type_ids = np.array(token_type_ids, dtype=int)\n", |
| 152 | + "train_snli_xnli_inputs = (train_snli_xnli_input_ids, train_snli_xnli_attention_masks, train_snli_xnli_type_ids)" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "markdown", |
| 157 | + "metadata": {}, |
| 158 | + "source": [ |
| 159 | + "# DEV SET Preprocessing" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "code", |
| 164 | + "execution_count": null, |
| 165 | + "metadata": {}, |
| 166 | + "outputs": [], |
| 167 | + "source": [ |
| 168 | + "# 토크나이저를 제외하고는 5장에서 처리한 방식과 유사하게 접근\n", |
| 169 | + "input_ids = []\n", |
| 170 | + "attention_masks = []\n", |
| 171 | + "token_type_ids = []\n", |
| 172 | + "\n", |
| 173 | + "for sent1, sent2 in zip(dev_data_xnli['sentence1'], dev_data_xnli['sentence2']):\n", |
| 174 | + " try:\n", |
| 175 | + " input_id, attention_mask, token_type_id = bert_tokenizer_v2(sent1, sent2, MAX_LEN)\n", |
| 176 | + "\n", |
| 177 | + " input_ids.append(input_id)\n", |
| 178 | + " attention_masks.append(attention_mask)\n", |
| 179 | + " token_type_ids.append(token_type_id)\n", |
| 180 | + " except Exception as e:\n", |
| 181 | + " print(e)\n", |
| 182 | + " print(sent1, sent2)\n", |
| 183 | + " pass\n", |
| 184 | + " \n", |
| 185 | + "dev_xnli_input_ids = np.array(input_ids, dtype=int)\n", |
| 186 | + "dev_xnli_attention_masks = np.array(attention_masks, dtype=int)\n", |
| 187 | + "dev_xnli_type_ids = np.array(token_type_ids, dtype=int)\n", |
| 188 | + "dev_xnli_inputs = (dev_xnli_input_ids, dev_xnli_attention_masks, dev_xnli_type_ids)" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "code", |
| 193 | + "execution_count": null, |
| 194 | + "metadata": { |
| 195 | + "scrolled": true |
| 196 | + }, |
| 197 | + "outputs": [], |
| 198 | + "source": [ |
| 199 | + "# Label을 Netural, Contradiction, Entailment 에서 숫자 형으로 변경한다.\n", |
| 200 | + "label_dict = {\"entailment\": 0, \"contradiction\": 1, \"neutral\": 2}\n", |
| 201 | + "def convert_int(label):\n", |
| 202 | + " num_label = label_dict[label] \n", |
| 203 | + " return num_label\n", |
| 204 | + "\n", |
| 205 | + "train_data_snli_xnli[\"gold_label_int\"] = train_data_snli_xnli[\"gold_label\"].apply(convert_int)\n", |
| 206 | + "train_data_labels = np.array(train_data_snli_xnli['gold_label_int'], dtype=int)\n", |
| 207 | + "\n", |
| 208 | + "dev_data_xnli[\"gold_label_int\"] = dev_data_xnli[\"gold_label\"].apply(convert_int)\n", |
| 209 | + "dev_data_labels = np.array(dev_data_xnli['gold_label_int'], dtype=int)\n", |
| 210 | + "\n", |
| 211 | + "print(\"# train labels: {}, #dev labels: {}\".format(len(train_data_labels), len(dev_data_labels)))" |
| 212 | + ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "cell_type": "code", |
| 216 | + "execution_count": null, |
| 217 | + "metadata": {}, |
| 218 | + "outputs": [], |
| 219 | + "source": [ |
| 220 | + "class TFBertClassifier(tf.keras.Model):\n", |
| 221 | + " def __init__(self, model_name, dir_path, num_class):\n", |
| 222 | + " super(TFBertClassifier, self).__init__()\n", |
| 223 | + "\n", |
| 224 | + " self.bert = TFBertModel.from_pretrained(model_name, cache_dir=dir_path)\n", |
| 225 | + " self.dropout = tf.keras.layers.Dropout(self.bert.config.hidden_dropout_prob)\n", |
| 226 | + " self.classifier = tf.keras.layers.Dense(num_class, \n", |
| 227 | + " kernel_initializer=tf.keras.initializers.TruncatedNormal(self.bert.config.initializer_range), \n", |
| 228 | + " name=\"classifier\")\n", |
| 229 | + " \n", |
| 230 | + " def call(self, inputs, attention_mask=None, token_type_ids=None, training=False):\n", |
| 231 | + " \n", |
| 232 | + " #outputs 값: # sequence_output, pooled_output, (hidden_states), (attentions)\n", |
| 233 | + " outputs = self.bert(inputs, attention_mask=attention_mask, token_type_ids=token_type_ids)\n", |
| 234 | + " pooled_output = outputs[1] \n", |
| 235 | + " pooled_output = self.dropout(pooled_output, training=training)\n", |
| 236 | + " logits = self.classifier(pooled_output)\n", |
| 237 | + "\n", |
| 238 | + " return logits\n", |
| 239 | + "\n", |
| 240 | + "cls_model = TFBertClassifier(model_name='bert-base-multilingual-cased',\n", |
| 241 | + " dir_path='bert_ckpt',\n", |
| 242 | + " num_class=3)" |
| 243 | + ] |
| 244 | + }, |
| 245 | + { |
| 246 | + "cell_type": "code", |
| 247 | + "execution_count": null, |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [], |
| 250 | + "source": [ |
| 251 | + "# 학습 준비하기\n", |
| 252 | + "optimizer = tf.keras.optimizers.Adam(3e-5)\n", |
| 253 | + "loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)\n", |
| 254 | + "metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')\n", |
| 255 | + "cls_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])" |
| 256 | + ] |
| 257 | + }, |
| 258 | + { |
| 259 | + "cell_type": "code", |
| 260 | + "execution_count": null, |
| 261 | + "metadata": {}, |
| 262 | + "outputs": [], |
| 263 | + "source": [ |
| 264 | + "#학습 진행하기\n", |
| 265 | + "model_name = \"tf2_KorNLI\"\n", |
| 266 | + "\n", |
| 267 | + "# overfitting을 막기 위한 ealrystop 추가\n", |
| 268 | + "earlystop_callback = EarlyStopping(monitor='val_accuracy', min_delta=0.0001,patience=2)\n", |
| 269 | + "checkpoint_path = os.path.join(DATA_OUT_PATH, model_name, 'weights.h5')\n", |
| 270 | + "checkpoint_dir = os.path.dirname(checkpoint_path)\n", |
| 271 | + "\n", |
| 272 | + "# Create path if exists\n", |
| 273 | + "if os.path.exists(checkpoint_dir):\n", |
| 274 | + " print(\"{} -- Folder already exists \\n\".format(checkpoint_dir))\n", |
| 275 | + "else:\n", |
| 276 | + " os.makedirs(checkpoint_dir, exist_ok=True)\n", |
| 277 | + " print(\"{} -- Folder create complete \\n\".format(checkpoint_dir))\n", |
| 278 | + " \n", |
| 279 | + "cp_callback = ModelCheckpoint(\n", |
| 280 | + " checkpoint_path, monitor='val_accuracy', verbose=1, save_best_only=True, save_weights_only=True)\n", |
| 281 | + "\n", |
| 282 | + "# 학습과 eval 시작\n", |
| 283 | + "history = cls_model.fit(train_snli_xnli_inputs, train_data_labels, epochs=NUM_EPOCHS,\n", |
| 284 | + " validation_data = (dev_xnli_inputs, dev_data_labels),\n", |
| 285 | + " batch_size=BATCH_SIZE, callbacks=[earlystop_callback, cp_callback])\n", |
| 286 | + "\n", |
| 287 | + "#steps_for_epoch\n", |
| 288 | + "print(history.history)" |
| 289 | + ] |
| 290 | + }, |
| 291 | + { |
| 292 | + "cell_type": "code", |
| 293 | + "execution_count": null, |
| 294 | + "metadata": {}, |
| 295 | + "outputs": [], |
| 296 | + "source": [ |
| 297 | + "plot_graphs(history, 'accuracy')\n", |
| 298 | + "plot_graphs(history, 'loss')" |
| 299 | + ] |
| 300 | + }, |
| 301 | + { |
| 302 | + "cell_type": "markdown", |
| 303 | + "metadata": {}, |
| 304 | + "source": [ |
| 305 | + "# KorNLI Test dataset" |
| 306 | + ] |
| 307 | + }, |
| 308 | + { |
| 309 | + "cell_type": "code", |
| 310 | + "execution_count": null, |
| 311 | + "metadata": {}, |
| 312 | + "outputs": [], |
| 313 | + "source": [ |
| 314 | + "# Load Test dataset\n", |
| 315 | + "TEST_XNLI_DF = os.path.join(DATA_IN_PATH, 'KorNLI', 'xnli.test.ko.tsv')\n", |
| 316 | + "\n", |
| 317 | + "test_data_xnli = pd.read_csv(TEST_XNLI_DF, header=0, delimiter = '\\t', quoting = 3)\n", |
| 318 | + "test_data_xnli = test_data_xnli.dropna()\n", |
| 319 | + "test_data_xnli.head()" |
| 320 | + ] |
| 321 | + }, |
| 322 | + { |
| 323 | + "cell_type": "code", |
| 324 | + "execution_count": null, |
| 325 | + "metadata": {}, |
| 326 | + "outputs": [], |
| 327 | + "source": [ |
| 328 | + "# Test set도 똑같은 방법으로 구성한다.\n", |
| 329 | + "\n", |
| 330 | + "input_ids = []\n", |
| 331 | + "attention_masks = []\n", |
| 332 | + "token_type_ids = []\n", |
| 333 | + "\n", |
| 334 | + "for sent1, sent2 in zip(test_data_xnli['sentence1'], test_data_xnli['sentence2']):\n", |
| 335 | + " \n", |
| 336 | + " try:\n", |
| 337 | + " input_id, attention_mask, token_type_id = bert_tokenizer_v2(sent1, sent2, MAX_LEN)\n", |
| 338 | + "\n", |
| 339 | + " input_ids.append(input_id)\n", |
| 340 | + " attention_masks.append(attention_mask)\n", |
| 341 | + " token_type_ids.append(token_type_id)\n", |
| 342 | + " except Exception as e:\n", |
| 343 | + " print(e)\n", |
| 344 | + " print(sent1, sent2)\n", |
| 345 | + " pass\n", |
| 346 | + " \n", |
| 347 | + " \n", |
| 348 | + "test_xnli_input_ids = np.array(input_ids, dtype=int)\n", |
| 349 | + "test_xnli_attention_masks = np.array(attention_masks, dtype=int)\n", |
| 350 | + "test_xnli_type_ids = np.array(token_type_ids, dtype=int)\n", |
| 351 | + "test_xnli_inputs = (test_xnli_input_ids, test_xnli_attention_masks, test_xnli_type_ids)" |
| 352 | + ] |
| 353 | + }, |
| 354 | + { |
| 355 | + "cell_type": "code", |
| 356 | + "execution_count": null, |
| 357 | + "metadata": {}, |
| 358 | + "outputs": [], |
| 359 | + "source": [ |
| 360 | + "test_data_xnli[\"gold_label_int\"] = test_data_xnli[\"gold_label\"].apply(convert_int)\n", |
| 361 | + "test_data_xnli_labels = np.array(test_data_xnli['gold_label_int'], dtype=int)\n", |
| 362 | + "\n", |
| 363 | + "print(\"# sents: {}, # labels: {}\".format(len(test_xnli_input_ids), len(test_data_xnli_labels)))" |
| 364 | + ] |
| 365 | + }, |
| 366 | + { |
| 367 | + "cell_type": "code", |
| 368 | + "execution_count": null, |
| 369 | + "metadata": {}, |
| 370 | + "outputs": [], |
| 371 | + "source": [ |
| 372 | + "results = cls_model.evaluate(test_xnli_inputs, test_data_xnli_labels, batch_size=512)\n", |
| 373 | + "print(\"test loss, test acc: \", results)" |
| 374 | + ] |
| 375 | + } |
| 376 | + ], |
| 377 | + "metadata": { |
| 378 | + "kernelspec": { |
| 379 | + "display_name": "Python 3", |
| 380 | + "language": "python", |
| 381 | + "name": "python3" |
| 382 | + }, |
| 383 | + "language_info": { |
| 384 | + "codemirror_mode": { |
| 385 | + "name": "ipython", |
| 386 | + "version": 3 |
| 387 | + }, |
| 388 | + "file_extension": ".py", |
| 389 | + "mimetype": "text/x-python", |
| 390 | + "name": "python", |
| 391 | + "nbconvert_exporter": "python", |
| 392 | + "pygments_lexer": "ipython3", |
| 393 | + "version": "3.7.3" |
| 394 | + } |
| 395 | + }, |
| 396 | + "nbformat": 4, |
| 397 | + "nbformat_minor": 2 |
| 398 | +} |
0 commit comments