Skip to content

LSTM:About data sequence in 7-RNN_Classifier_example.py 关于过程数据序列化问题 7-RNN_Classifier_example.py? #66

@rosefun

Description

@rosefun

Now dataset X={x1,x2,x3...,xn},shape=[n,m], x1,x2,...,xn are samples of X.
And label data y.shape=[n,k]
If I use a time window with length of 2,then after reshape:
X= tf.reshape(X,[int(n/2), 2, m])
X.shape=[n/2,m]
But I have a problem in getting the cost by formula,
cost_rnn = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_ , labels=y))
because both X and y have different shape.

Anybody knows how to solve this problem?


现在,有数据集X={x1,x2,x3...,xn},shape=[n,m]
其中,x1包含多个变量,shape=[m].
比如,X=[[1,10,100],[2,20,200],[3,30,300]],可以看做X由多个样本x1,x2,...组成的。

标签样本y={y1,y2,...yn},shape=[n,k],
比如,Y=[[1,0,0],[0,1,0],[0,0,1]]。
这个LSTM如果序列化数据的话,比如说,用时间窗time_step=2,
X= tf.reshape(X,[int(n/2), 2, m])

那么,序列化之后的样本,X就只有n-1 个了,shape=[n/2,m]
这样,由于维度不一样,就无法求出cost
cost_rnn = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_rnn, labels=y))

针对这种数据集应该怎样处理?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions