Skip to content

Commit 2b72834

Browse files
authored
README.md
1 parent aa6542b commit 2b72834

File tree

1 file changed

+14
-4
lines changed

1 file changed

+14
-4
lines changed

README.md

Lines changed: 14 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,15 @@
1+
**FAUL-GOODSEN-POWELL algorithm**
2+
13
This is a Python implementation of the Faul-Goodsen-Powell algorithm which produces an interpolant for d-dimensional data using the multiquadric radial basis functions. It works well for even very high dimensional data.
24

5+
The interpolant, s(x) is of the form
6+
7+
$s(x) = \sum_i^n \lambda_i \phi(\|x-x_i\|) + \alpha$
8+
9+
where the $x_i$ are the data centers and $\phi(x) = (x^2+c^2)^{\frac{1}{2}}$ is the multiquadric radial basis function.
10+
11+
The algorithm returns the coefficients $\lambda_i$ and the value of $\alpha$.
12+
313
**INSTALLATION/REQUIREMENTS:**
414

515
Python and Numpy
@@ -20,13 +30,13 @@ Python and Numpy
2030

2131
- Iteration count - k
2232

23-
The interpolant, s(x) is of the form
33+
- Interpolant coefficients - $\lambda_i$
2434

25-
$s(x) = \sum_i^n \lambda_i \phi(\|x-x_i\|) + \alpha$
35+
- Interpolant constant - $\alpha$
36+
37+
- Interpolation error at the centers - err
2638

27-
where the $x_i$ are the data centers and $\phi(x) = (x^2+c^2)^{\frac{1}{2}}$ is the multiquadric radial basis function.
2839

29-
The algorithm returns the coefficients lambda_i and the value of alpha.
3040

3141
You can try the DEMO version or use the FULL IMPLEMENTATION version as well.
3242

0 commit comments

Comments
 (0)