|
3 | 3 |
|
4 | 4 | import numpy as np |
5 | 5 | from scipy import signal |
6 | | -from sklearn.preprocessing import normalize |
7 | 6 |
|
8 | | -from wfdb.processing.basic import get_filter_gain |
| 7 | +from wfdb.processing.basic import get_filter_gain, normalize |
9 | 8 | from wfdb.processing.peaks import find_local_peaks |
10 | 9 | from wfdb.io.record import Record |
11 | 10 |
|
@@ -288,10 +287,10 @@ def _learn_init_params(self, n_calib_beats=8): |
288 | 287 |
|
289 | 288 | # Question: should the signal be squared? Case for inverse QRS |
290 | 289 | # complexes |
291 | | - sig_segment = normalize((self.sig_f[i - self.qrs_radius: |
292 | | - i + self.qrs_radius]).reshape(-1, 1), axis=0) |
| 290 | + sig_segment = normalize(self.sig_f[i - self.qrs_radius: |
| 291 | + i + self.qrs_radius]) |
293 | 292 |
|
294 | | - xcorr = np.correlate(sig_segment[:, 0], ricker_wavelet[:,0]) |
| 293 | + xcorr = np.correlate(sig_segment, ricker_wavelet[:,0]) |
295 | 294 |
|
296 | 295 | # Classify as QRS if xcorr is large enough |
297 | 296 | if xcorr > 0.6 and i-last_qrs_ind > self.rr_min: |
@@ -530,8 +529,7 @@ def _is_twave(self, peak_num): |
530 | 529 |
|
531 | 530 | # Get half the QRS width of the signal to the left. |
532 | 531 | # Should this be squared? |
533 | | - sig_segment = normalize((self.sig_f[i - self.qrs_radius:i] |
534 | | - ).reshape(-1, 1), axis=0) |
| 532 | + sig_segment = normalize(self.sig_f[i - self.qrs_radius:i]) |
535 | 533 | last_qrs_segment = self.sig_f[self.last_qrs_ind - self.qrs_radius: |
536 | 534 | self.last_qrs_ind] |
537 | 535 |
|
|
0 commit comments