|
14 | 14 | import numpy as np |
15 | 15 | import pandas as pd |
16 | 16 | from joblib import dump, load |
17 | | -from keras.datasets import cifar10, mnist, imdb |
| 17 | +from keras.datasets import cifar10, cifar100, mnist, imdb |
18 | 18 | from keras.layers import Activation |
19 | 19 | from keras.layers import Conv2D, GlobalAveragePooling2D, MaxPooling2D |
20 | 20 | from keras.layers import Dense, Dropout |
@@ -209,6 +209,241 @@ def train_val_split_local(x, y): |
209 | 209 | return train_test_split(x, y, test_size=0.1, random_state=42) |
210 | 210 |
|
211 | 211 |
|
| 212 | +class Cifar100(Dataset): |
| 213 | + def __init__(self): |
| 214 | + self.input_shape = (32, 32, 3) |
| 215 | + self.num_classes = 100 |
| 216 | + x_test, x_train, y_test, y_train = self.load_data() |
| 217 | + |
| 218 | + super(Cifar10, self).__init__(dataset_name='cifar100', |
| 219 | + num_classes=self.num_classes, |
| 220 | + input_shape=self.input_shape, |
| 221 | + x_train=x_train, |
| 222 | + y_train=y_train, |
| 223 | + x_test=x_test, |
| 224 | + y_test=y_test) |
| 225 | + |
| 226 | + def load_data(self): |
| 227 | + attempts = 0 |
| 228 | + while True: |
| 229 | + try: |
| 230 | + (x_train, y_train), (x_test, y_test) = cifar100.load_data() |
| 231 | + break |
| 232 | + except (HTTPError, URLError) as e: |
| 233 | + if hasattr(e, 'code'): |
| 234 | + temp = e.code |
| 235 | + else: |
| 236 | + temp = e.errno |
| 237 | + logger.debug( |
| 238 | + f'URL fetch failure on ' |
| 239 | + f'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz : ' |
| 240 | + f'{temp} -- {e.reason}') |
| 241 | + if attempts < constants.NUMBER_OF_DOWNLOAD_ATTEMPTS: |
| 242 | + sleep(2) |
| 243 | + attempts += 1 |
| 244 | + else: |
| 245 | + raise |
| 246 | + |
| 247 | + # Pre-process inputs |
| 248 | + x_train = self.preprocess_dataset_inputs(x_train) |
| 249 | + x_test = self.preprocess_dataset_inputs(x_test) |
| 250 | + y_train = self.preprocess_dataset_labels(y_train) |
| 251 | + y_test = self.preprocess_dataset_labels(y_test) |
| 252 | + return x_test, x_train, y_test, y_train |
| 253 | + |
| 254 | + # Data samples pre-processing method for inputs |
| 255 | + @staticmethod |
| 256 | + def preprocess_dataset_inputs(x): |
| 257 | + x = x.astype("float32") |
| 258 | + x /= 255 |
| 259 | + |
| 260 | + return x |
| 261 | + |
| 262 | + # Data samples pre-processing method for labels |
| 263 | + def preprocess_dataset_labels(self, y): |
| 264 | + y = to_categorical(y, self.num_classes) |
| 265 | + |
| 266 | + return y |
| 267 | + |
| 268 | + # Model structure and generation |
| 269 | + def generate_new_model(self): |
| 270 | + """Return a CNN model from scratch based on given batch_size""" |
| 271 | + |
| 272 | + model = models.vgg16() |
| 273 | + |
| 274 | + # TODO: Add new model |
| 275 | + # model = Sequential() |
| 276 | + # model.add(Conv2D(32, (3, 3), padding='same', input_shape=self.input_shape)) |
| 277 | + # model.add(Activation('relu')) |
| 278 | + # model.add(Conv2D(32, (3, 3))) |
| 279 | + # model.add(Activation('relu')) |
| 280 | + # model.add(MaxPooling2D(pool_size=(2, 2))) |
| 281 | + # model.add(Dropout(0.25)) |
| 282 | + |
| 283 | + # model.add(Conv2D(64, (3, 3), padding='same')) |
| 284 | + # model.add(Activation('relu')) |
| 285 | + # model.add(Conv2D(64, (3, 3))) |
| 286 | + # model.add(Activation('relu')) |
| 287 | + # model.add(MaxPooling2D(pool_size=(2, 2))) |
| 288 | + # model.add(Dropout(0.25)) |
| 289 | + |
| 290 | + # model.add(Flatten()) |
| 291 | + # model.add(Dense(512)) |
| 292 | + # model.add(Activation('relu')) |
| 293 | + # model.add(Dropout(0.5)) |
| 294 | + # model.add(Dense(self.num_classes)) |
| 295 | + # model.add(Activation('softmax')) |
| 296 | + |
| 297 | + # # initiate RMSprop optimizer |
| 298 | + # opt = RMSprop(learning_rate=0.0001, decay=1e-6) |
| 299 | + |
| 300 | + # # Let's train the model using RMSprop |
| 301 | + # model.compile(loss='categorical_crossentropy', |
| 302 | + # optimizer=opt, |
| 303 | + # metrics=['accuracy']) |
| 304 | + |
| 305 | + return model |
| 306 | + |
| 307 | + # train, test, val splits |
| 308 | + @staticmethod |
| 309 | + def train_test_split_local(x, y): |
| 310 | + return train_test_split(x, y, test_size=0.1, random_state=42) |
| 311 | + |
| 312 | + @staticmethod |
| 313 | + def train_val_split_local(x, y): |
| 314 | + return train_test_split(x, y, test_size=0.1, random_state=42) |
| 315 | + |
| 316 | + |
| 317 | + class cifar100_dataset(torch.utils.data.Dataset): |
| 318 | + |
| 319 | + def __init__(self, x, y, transform=[]): |
| 320 | + self.x = x |
| 321 | + self.y = y |
| 322 | + self.transform = transform |
| 323 | + |
| 324 | + def __len__(self): |
| 325 | + return len(self.x) |
| 326 | + |
| 327 | + def __getitem__(self, index): |
| 328 | + |
| 329 | + x = self.x[index] |
| 330 | + y = torch.tensor(int(self.y[index])) |
| 331 | + |
| 332 | + if self.transform: |
| 333 | + x = self.transform(x) |
| 334 | + |
| 335 | + return x, y |
| 336 | + |
| 337 | + |
| 338 | + class ModelPytorch(torchvision.model.vgg16): |
| 339 | + def __init__(self, optimizer, criterion): |
| 340 | + super(Cifar100.ModelPytorch, self).__init__() |
| 341 | + self.optimizer = optimizer |
| 342 | + self.criterion = criterion |
| 343 | + |
| 344 | + def fit(self, x_train, y_train, batch_size, validation_data, epochs=1, verbose=False): |
| 345 | + train_data = cifar100_dataset(x_train, y_train) |
| 346 | + train_loader = data.DataLoader(train_data, batch_size=batch_size, shuffle=True) |
| 347 | + |
| 348 | + history = super(Cifar100.ModelPytorch, self).train() |
| 349 | + |
| 350 | + for batch_idx, (image, label) in enumerate(trainloader): |
| 351 | + images, labels = torch.autograd.Variable(image), torch.autograd.Variable(label) |
| 352 | + |
| 353 | + outputs = model(images) |
| 354 | + loss = self.criterion(outputs, labels) |
| 355 | + |
| 356 | + self.optimizer.zero_grad() |
| 357 | + loss.backward() |
| 358 | + self.optimizer.step() |
| 359 | + |
| 360 | + [loss, acc] = self.evaluate(x_train, y_train) |
| 361 | + [val_loss, val_acc] = self.evaluate(*validation_data) |
| 362 | + # Mimic Keras' history |
| 363 | + history.history = { |
| 364 | + 'loss': [loss], |
| 365 | + 'accuracy': [acc], |
| 366 | + 'val_loss': [val_loss], |
| 367 | + 'val_accuracy': [val_acc] |
| 368 | + } |
| 369 | + |
| 370 | + return history |
| 371 | + |
| 372 | + def evaluate(self, x_eval, y_eval, **kwargs): |
| 373 | + test_data = cifar100_dataset(x_eval, y_eval) |
| 374 | + test_loader = data.DataLoader(test_data, batch_size=batch_size, shuffle=True) |
| 375 | + |
| 376 | + self.eval() |
| 377 | + |
| 378 | + with torch.no_grad(): |
| 379 | + |
| 380 | + y_true_np = [] |
| 381 | + y_pred_np = [] |
| 382 | + count=0 |
| 383 | + for i, (images, labels) in enumerate(validation_loader): |
| 384 | + count+= 1 |
| 385 | + N = images.size(0) |
| 386 | + |
| 387 | + images = torch.autograd.Variable(images) |
| 388 | + labels = torch.autograd.Variable(labels) |
| 389 | + |
| 390 | + outputs = model_ft(images) |
| 391 | + |
| 392 | + predictions = outputs.max(1, keepdim=True)[1] |
| 393 | + |
| 394 | + val_loss =+ criterion(outputs, labels).item() |
| 395 | + val_acc =+ (predictions.eq(labels.view_as(predictions)).sum().item() / N) |
| 396 | + |
| 397 | + model_evaluation = [val_loss/count, val_acc/count] |
| 398 | + |
| 399 | + return model_evaluation |
| 400 | + |
| 401 | +#TODO |
| 402 | + # def save_weights(self, path): |
| 403 | + # if self.coef_ is None: |
| 404 | + # raise ValueError( |
| 405 | + # 'Coef and intercept are set to None, it seems the model has not been fit properly.') |
| 406 | + # if '.h5' in path: |
| 407 | + # logger.debug('Automatically switch file format from .h5 to .npy') |
| 408 | + # path.replace('.h5', '.npy') |
| 409 | + # np.save(path, self.get_weights()) |
| 410 | + |
| 411 | + # def load_weights(self, path): |
| 412 | + # if '.h5' in path: |
| 413 | + # logger.debug('Automatically switch file format from .h5 to .npy') |
| 414 | + # path.replace('.h5', '.npy') |
| 415 | + # weights = load(path) |
| 416 | + # self.set_weights(weights) |
| 417 | + |
| 418 | + # def get_weights(self): |
| 419 | + # if self.coef_ is None: |
| 420 | + # return None |
| 421 | + # else: |
| 422 | + # return np.concatenate((self.coef_, self.intercept_.reshape(1, 1)), axis=1) |
| 423 | + |
| 424 | + # def set_weights(self, weights): |
| 425 | + # if weights is None: |
| 426 | + # self.coef_ = None |
| 427 | + # self.intercept_ = None |
| 428 | + # else: |
| 429 | + # self.coef_ = np.array(weights[0][:-1]).reshape(1, -1) |
| 430 | + # self.intercept_ = np.array(weights[0][-1]).reshape(1) |
| 431 | + |
| 432 | + # def save_model(self, path): |
| 433 | + # if '.h5' in path: |
| 434 | + # logger.debug('Automatically switch file format from .h5 to .joblib') |
| 435 | + # path.replace('.h5', '.joblib') |
| 436 | + # dump(self, path) |
| 437 | + |
| 438 | + # @staticmethod |
| 439 | + # def load_model(path): |
| 440 | + # if '.h5' in path: |
| 441 | + # logger.debug('Automatically switch file format from .h5 to .joblib') |
| 442 | + # path.replace('.h5', '.joblib') |
| 443 | + # return load(path) |
| 444 | + |
| 445 | + |
| 446 | + |
212 | 447 | class Titanic(Dataset): |
213 | 448 | def __init__(self): |
214 | 449 | self.num_classes = 2 |
|
0 commit comments