4747 "metadata" : {},
4848 "source" : [
4949 " # labelbox\n " ,
50- " !pip3 install -q labelbox[data]\n " ,
51- " import labelbox as lb\n " ,
52- " #ndjson\n " ,
53- " !pip3 install -q ndjson\n " ,
54- " import ndjson"
50+ " !pip3 install -q \" labelbox[data]\" "
5551 ],
5652 "cell_type" : " code" ,
57- "outputs" : [
58- {
59- "output_type" : " stream" ,
60- "name" : " stdout" ,
61- "text" : [
62- " \u001b [2K \u001b [90m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b [0m \u001b [32m189.2/189.2 KB\u001b [0m \u001b [31m3.4 MB/s\u001b [0m eta \u001b [36m0:00:00\u001b [0m\n " ,
63- " \u001b [2K \u001b [90m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b [0m \u001b [32m7.8/7.8 MB\u001b [0m \u001b [31m52.8 MB/s\u001b [0m eta \u001b [36m0:00:00\u001b [0m\n " ,
64- " \u001b [?25h Preparing metadata (setup.py) ... \u001b [?25l\u001b [?25hdone\n " ,
65- " Building wheel for pygeotile (setup.py) ... \u001b [?25l\u001b [?25hdone\n "
66- ]
67- }
53+ "outputs" : [],
54+ "execution_count" : null
55+ },
56+ {
57+ "metadata" : {},
58+ "source" : [
59+ " import labelbox as lb \n " ,
60+ " import numpy as np\n " ,
61+ " import json"
6862 ],
63+ "cell_type" : " code" ,
64+ "outputs" : [],
6965 "execution_count" : null
7066 },
7167 {
8278 " !pip3 install -q 'git+https://github.com/Labelbox/advlib.git'"
8379 ],
8480 "cell_type" : " code" ,
85- "outputs" : [
86- {
87- "output_type" : " stream" ,
88- "name" : " stdout" ,
89- "text" : [
90- " Installing build dependencies ... \u001b [?25l\u001b [?25hdone\n " ,
91- " Getting requirements to build wheel ... \u001b [?25l\u001b [?25hdone\n " ,
92- " Preparing metadata (pyproject.toml) ... \u001b [?25l\u001b [?25hdone\n " ,
93- " \u001b [2K \u001b [90m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b [0m \u001b [32m62.8/62.8 KB\u001b [0m \u001b [31m2.6 MB/s\u001b [0m eta \u001b [36m0:00:00\u001b [0m\n " ,
94- " \u001b [?25h Building wheel for advlib (pyproject.toml) ... \u001b [?25l\u001b [?25hdone\n "
95- ]
96- }
97- ],
81+ "outputs" : [],
9882 "execution_count" : null
9983 },
10084 {
151135 {
152136 "metadata" : {},
153137 "source" : [
154- " import numpy as np \n " ,
138+ " \n " ,
155139 " \n " ,
156140 " nb_data_rows = len(data_row_ids)\n " ,
157141 " # generate 1000 custom embedding vectors, of dimension 2048 each\n " ,
180164 "metadata" : {},
181165 "source" : [
182166 " # convert payload to ndjson file\n " ,
167+ " \n " ,
183168 " with open('payload.ndjson', 'w') as f:\n " ,
184- " ndjson.dump(payload, f)\n " ,
169+ " sanity_check_payload = json.dump(payload, f)\n " ,
170+ " \n " ,
185171 " \n " ,
186172 " # sanity check that you can read/load the file and the payload is correct\n " ,
187173 " with open('payload.ndjson') as f:\n " ,
188- " sanity_check_payload = ndjson.load(f)\n " ,
174+ " sanity_check_payload = json.load(f)\n " ,
175+ " \n " ,
189176 " \n " ,
190177 " print(\" Nb of custom embedding vectors in sanity_check_payload: \" , len(sanity_check_payload))\n " ,
191178 " # print(\" sanity_check_payload: \" , sanity_check_payload)"
192179 ],
193180 "cell_type" : " code" ,
194- "outputs" : [
195- {
196- "output_type" : " stream" ,
197- "name" : " stdout" ,
198- "text" : [
199- " Nb of custom embedding vectors in sanity_check_payload: 1000\n "
200- ]
201- }
202- ],
181+ "outputs" : [],
203182 "execution_count" : null
204183 },
205- {
206- "metadata" : {},
207- "source" : [
208- " # Pick an existing custom embedding, or create a custom embedding"
209- ],
210- "cell_type" : " markdown"
211- },
212184 {
213185 "metadata" : {},
214186 "source" : [
215187 " # See all custom embeddings available\n " ,
216188 " !advtool embeddings list"
217189 ],
218190 "cell_type" : " code" ,
219- "outputs" : [
220- {
221- "output_type" : " stream" ,
222- "name" : " stdout" ,
223- "text" : [
224- " 00000000-0000-0000-0000-000000000000 - Image Embedding (CLIP ViT-B/32) - dims: 512 \n " ,
225- " 00000000-0000-0000-0000-000000000001 - Text embedding (All-MPNet-base-v2) - dims: 768 \n " ,
226- " 45cafc7a-5314-462a-8afc-7a5314062a3b - my_custom_embedding_2048_dimensions - dims: 2048 \n " ,
227- " 7d3a6118-589d-4b6c-ba61-18589dbb6ccf - ResNet50_2048_dimensions - dims: 2048 \n "
228- ]
229- }
230- ],
191+ "outputs" : [],
231192 "execution_count" : null
232193 },
233194 {
234195 "metadata" : {},
235196 "source" : [
236197 " # # Create a new custom embedding\n " ,
237- " !advtool embeddings create my_custom_embedding_2048_dimensions_v2 2048\n " ,
238- " # will return the ID of the newly created embedding, e.g. 0ddc5d5c-0963-41ad-9c5d-5c0963a1ad98 "
198+ " !advtool embeddings create my_custom_embedding_2048_dimensions 2048\n " ,
199+ " # will return the ID of the newly created embedding, e.g. cgbjjt5ra07710005liytdf19 "
239200 ],
240201 "cell_type" : " code" ,
241- "outputs" : [
242- {
243- "output_type" : " stream" ,
244- "name" : " stdout" ,
245- "text" : [
246- " Embedding type created id=da5d4b0f-e440-4e2e-9d4b-0fe4400e2e8d\n "
247- ]
248- }
249- ],
202+ "outputs" : [],
250203 "execution_count" : null
251204 },
252205 {
253206 "metadata" : {},
254207 "source" : [
255208 " # # Delete a custom embedding\n " ,
256- " # !advtool embeddings delete 2e122b85-7def-44fb-922b-857defe4fb8a "
209+ " # !advtool embeddings delete cj7j0ukre0771000blj4qnxgn "
257210 ],
258211 "cell_type" : " code" ,
259212 "outputs" : [],
270223 "metadata" : {},
271224 "source" : [
272225 " # Upload the payload to Labelbox \n " ,
273- " !advtool embeddings import da5d4b0f-e440-4e2e-9d4b-0fe4400e2e8d ./payload.ndjson"
226+ " !advtool embeddings import cj7j0ukre0771000blj4qnxgn ./payload.ndjson"
274227 ],
275228 "cell_type" : " code" ,
276- "outputs" : [
277- {
278- "output_type" : " stream" ,
279- "name" : " stdout" ,
280- "text" : [
281- " Uploading file: ./payload.ndjson \n " ,
282- " Progress: 100.0%\n " ,
283- " Check 'advtool embeddings count <embedding id>' for total searchable embeddings\n "
284- ]
285- }
286- ],
229+ "outputs" : [],
287230 "execution_count" : null
288231 },
232+ {
233+ "metadata" : {},
234+ "source" : [
235+ " # Pick an existing custom embedding, or create a custom embedding"
236+ ],
237+ "cell_type" : " markdown"
238+ },
289239 {
290240 "metadata" : {},
291241 "source" : [
292242 " # count how many data rows have a specific custom embedding (This can take a couple of minutes)\n " ,
293- " !advtool embeddings count da5d4b0f-e440-4e2e-9d4b-0fe4400e2e8d "
243+ " !advtool embeddings count cj7j0ukre0771000blj4qnxgn "
294244 ],
295245 "cell_type" : " code" ,
296- "outputs" : [
297- {
298- "output_type" : " stream" ,
299- "name" : " stdout" ,
300- "text" : [
301- " 1000\n "
302- ]
303- }
304- ],
246+ "outputs" : [],
305247 "execution_count" : null
306248 },
307249 {
310252 " print(len(payload))"
311253 ],
312254 "cell_type" : " code" ,
313- "outputs" : [
314- {
315- "output_type" : " stream" ,
316- "name" : " stdout" ,
317- "text" : [
318- " 1000\n "
319- ]
320- }
321- ],
255+ "outputs" : [],
322256 "execution_count" : null
323257 }
324258 ]
325- }
259+ }
0 commit comments