3232 },
3333 {
3434 "cell_type" : " markdown" ,
35- "source" : [
36- " ## Batches (*Currently in Public Beta*)"
37- ],
35+ "id" : " Lup2QNWjaxKg" ,
3836 "metadata" : {
3937 "id" : " Lup2QNWjaxKg"
4038 },
41- "id" : " Lup2QNWjaxKg"
39+ "source" : [
40+ " ## Batches (*Currently in Public Beta*)"
41+ ]
4242 },
4343 {
4444 "cell_type" : " markdown" ,
45+ "id" : " KONWmRQkadPf" ,
46+ "metadata" : {
47+ "id" : " KONWmRQkadPf"
48+ },
4549 "source" : [
4650 " * A Batch is collection of datarows picked out of a Data Set.\n " ,
4751 " * A Datarow cannot be part of more than one batch in a project.\n " ,
5054 " * Batches may have Datarows from multiple Datasets.\n " ,
5155 " * Datarows can only be attached to a Project as part of a single Batch.\n " ,
5256 " * You can set priority for each Batch."
53- ],
54- "metadata" : {
55- "id" : " KONWmRQkadPf"
56- },
57- "id" : " KONWmRQkadPf"
57+ ]
5858 },
5959 {
6060 "cell_type" : " code" ,
6161 "execution_count" : null ,
62+ "id" : " HoW5ypnyzpqb" ,
6263 "metadata" : {
6364 "id" : " HoW5ypnyzpqb"
6465 },
6566 "outputs" : [],
6667 "source" : [
6768 " !pip install labelbox[data]"
68- ],
69- "id" : " HoW5ypnyzpqb"
69+ ]
7070 },
7171 {
7272 "cell_type" : " code" ,
7373 "execution_count" : null ,
74+ "id" : " 6-Us9Gj1zpqc" ,
7475 "metadata" : {
7576 "id" : " 6-Us9Gj1zpqc"
7677 },
7778 "outputs" : [],
7879 "source" : [
7980 " from labelbox import DataRow, Client\n " ,
8081 " import random"
81- ],
82- "id" : " 6-Us9Gj1zpqc"
82+ ]
8383 },
8484 {
8585 "cell_type" : " markdown" ,
86+ "id" : " qQiozm-dzpqd" ,
8687 "metadata" : {
8788 "id" : " qQiozm-dzpqd"
8889 },
8990 "source" : [
9091 " Set the following cell with your data to run this notebook:"
91- ],
92- "id" : " qQiozm-dzpqd"
92+ ]
9393 },
9494 {
9595 "cell_type" : " code" ,
9696 "execution_count" : null ,
97+ "id" : " 84Zna5c0zpqd" ,
9798 "metadata" : {
9899 "id" : " 84Zna5c0zpqd"
99100 },
100101 "outputs" : [],
101102 "source" : [
102103 " PROJECT_NAME = \" Batch Queue Demo\" #text project\n " ,
103104 " DATASET_NAME = \" Batch Queue Demo Data\" "
104- ],
105- "id" : " 84Zna5c0zpqd"
105+ ]
106106 },
107107 {
108108 "cell_type" : " markdown" ,
118118 {
119119 "cell_type" : " code" ,
120120 "execution_count" : null ,
121+ "id" : " Ge-dfNh-zpqe" ,
121122 "metadata" : {
122123 "id" : " Ge-dfNh-zpqe"
123124 },
126127 " # Add your api key\n " ,
127128 " API_KEY = None\n " ,
128129 " client = Client(api_key=API_KEY)"
129- ],
130- "id" : " Ge-dfNh-zpqe"
130+ ]
131131 },
132132 {
133133 "cell_type" : " code" ,
134134 "execution_count" : null ,
135+ "id" : " nMVtBYQmzpqe" ,
135136 "metadata" : {
136137 "id" : " nMVtBYQmzpqe"
137138 },
146147 " 'row_data': 'https://picsum.photos/200/300'\n " ,
147148 " })\n " ,
148149 " dataset.create_data_rows(uploads)"
149- ],
150- "id" : " nMVtBYQmzpqe"
150+ ]
151151 },
152152 {
153153 "cell_type" : " markdown" ,
154- "source" : [
155- " # Ensure project is in batch mode:"
156- ],
154+ "id" : " 61CvCD3C7qv6" ,
157155 "metadata" : {
158156 "id" : " 61CvCD3C7qv6"
159157 },
160- "id" : " 61CvCD3C7qv6"
158+ "source" : [
159+ " # Ensure project is in batch mode:"
160+ ]
161161 },
162162 {
163163 "cell_type" : " code" ,
164- "source" : [
165- " project = client.create_project(name=PROJECT_NAME)\n " ,
166- " project.update(queue_mode=project.QueueMode.Batch)"
167- ],
164+ "execution_count" : null ,
165+ "id" : " tqtT4q31787T" ,
168166 "metadata" : {
169167 "id" : " tqtT4q31787T"
170168 },
171- "id" : " tqtT4q31787T" ,
172- "execution_count" : null ,
173- "outputs" : []
169+ "outputs" : [],
170+ "source" : [
171+ " project = client.create_project(name=PROJECT_NAME)\n " ,
172+ " project.update(queue_mode=project.QueueMode.Batch)"
173+ ]
174174 },
175175 {
176176 "cell_type" : " markdown" ,
177- "source" : [
178- " # Collect Datarow id's:"
179- ],
177+ "id" : " Xti9AoZWELrq" ,
180178 "metadata" : {
181179 "id" : " Xti9AoZWELrq"
182180 },
183- "id" : " Xti9AoZWELrq"
181+ "source" : [
182+ " # Collect Datarow id's:"
183+ ]
184184 },
185185 {
186186 "cell_type" : " markdown" ,
187- "source" : [
188- " ### Select All Data Rows from dataset."
189- ],
187+ "id" : " 9JVLsXdevywS" ,
190188 "metadata" : {
191189 "id" : " 9JVLsXdevywS"
192190 },
193- "id" : " 9JVLsXdevywS"
191+ "source" : [
192+ " ### Select All Data Rows from dataset."
193+ ]
194194 },
195195 {
196196 "cell_type" : " code" ,
197- "source" : [
198- " data_rows = [dr.uid for dr in list(dataset.export_data_rows())]"
199- ],
197+ "execution_count" : null ,
198+ "id" : " U4C1ZyJ2EgTS" ,
200199 "metadata" : {
201200 "id" : " U4C1ZyJ2EgTS"
202201 },
203- "id" : " U4C1ZyJ2EgTS" ,
204- "execution_count" : null ,
205- "outputs" : []
202+ "outputs" : [],
203+ "source" : [
204+ " data_rows = [dr.uid for dr in list(dataset.export_data_rows())]"
205+ ]
206206 },
207207 {
208208 "cell_type" : " markdown" ,
209+ "id" : " B0UqO_O1V8ei" ,
210+ "metadata" : {
211+ "id" : " B0UqO_O1V8ei"
212+ },
209213 "source" : [
210214 " ### Randomly sample\n " ,
211215 " \n " ,
212216 " Rather than selecting all of the data we sample 5 data rows at random"
213- ],
214- "metadata" : {
215- "id" : " B0UqO_O1V8ei"
216- },
217- "id" : " B0UqO_O1V8ei"
217+ ]
218218 },
219219 {
220220 "cell_type" : " code" ,
221- "source" : [
222- " sample = random.sample(data_rows, 5)"
223- ],
221+ "execution_count" : null ,
222+ "id" : " WJAXBf1bV-td" ,
224223 "metadata" : {
225224 "id" : " WJAXBf1bV-td"
226225 },
227- "id" : " WJAXBf1bV-td" ,
228- "execution_count" : null ,
229- "outputs" : []
226+ "outputs" : [],
227+ "source" : [
228+ " sample = random.sample(data_rows, 5)"
229+ ]
230230 },
231231 {
232232 "cell_type" : " markdown" ,
233- "source" : [
234- " # Batch Manipulation"
235- ],
233+ "id" : " UPdaTqkgYyvt" ,
236234 "metadata" : {
237235 "id" : " UPdaTqkgYyvt"
238236 },
239- "id" : " UPdaTqkgYyvt"
237+ "source" : [
238+ " # Batch Manipulation"
239+ ]
240240 },
241241 {
242242 "cell_type" : " markdown" ,
243- "source" : [
244- " ### Create a Batch:"
245- ],
243+ "id" : " Al-K1lBBEjtb" ,
246244 "metadata" : {
247245 "id" : " Al-K1lBBEjtb"
248246 },
249- "id" : " Al-K1lBBEjtb"
247+ "source" : [
248+ " ### Create a Batch:"
249+ ]
250250 },
251251 {
252252 "cell_type" : " code" ,
253+ "execution_count" : null ,
254+ "id" : " resH3xqeErVv" ,
255+ "metadata" : {
256+ "id" : " resH3xqeErVv"
257+ },
258+ "outputs" : [],
253259 "source" : [
254260 " batch = project.create_batch(\n " ,
255261 " \" first batch\" , # Each batch in a project must have a unique name\n " ,
256262 " sample, # A list of data rows or data row ids\n " ,
257263 " 5 # priority between 1(Highest) - 5(lowest)\n " ,
258264 " )"
259- ],
260- "metadata" : {
261- "id" : " resH3xqeErVv"
262- },
263- "id" : " resH3xqeErVv" ,
264- "execution_count" : null ,
265- "outputs" : []
265+ ]
266266 },
267267 {
268268 "cell_type" : " code" ,
269- "source" : [
270- " # number of data rows in the batch\n " ,
271- " batch.size"
272- ],
269+ "execution_count" : null ,
270+ "id" : " gFio7ONOWYdJ" ,
273271 "metadata" : {
274272 "id" : " gFio7ONOWYdJ"
275273 },
276- "id" : " gFio7ONOWYdJ" ,
277- "execution_count" : null ,
278- "outputs" : []
274+ "outputs" : [],
275+ "source" : [
276+ " # number of data rows in the batch\n " ,
277+ " batch.size"
278+ ]
279279 },
280280 {
281281 "cell_type" : " markdown" ,
282+ "id" : " 8Cj64Isxzpqe" ,
282283 "metadata" : {
283284 "id" : " 8Cj64Isxzpqe"
284285 },
285286 "source" : [
286- " ### List DataRows in a Batch (Not supported yet)\n " ,
287- " Note: You can view your batch through in the Data Row table of the project"
288- ],
289- "id" : " 8Cj64Isxzpqe"
287+ " ### List DataRows in a Batch\n " ,
288+ " Note: You can view your batch through in the *Data Row tab* of the project"
289+ ]
290+ },
291+ {
292+ "cell_type" : " code" ,
293+ "execution_count" : null ,
294+ "id" : " 0a7d1d3e" ,
295+ "metadata" : {},
296+ "outputs" : [],
297+ "source" : [
298+ " data_rows = [dr for dr in batch.export_data_rows()]"
299+ ]
290300 },
291301 {
292302 "cell_type" : " markdown" ,
303+ "id" : " rU7iddSQzpqg" ,
293304 "metadata" : {
294305 "id" : " rU7iddSQzpqg"
295306 },
296307 "source" : [
297308 " ### Remove queued data rows by batch (Not supported yet)\n " ,
298309 " Note: You can do this through the batch management pane on the data rows tab of the project"
299- ],
300- "id" : " rU7iddSQzpqg"
310+ ]
301311 }
302312 ],
303313 "metadata" : {
314+ "colab" : {
315+ "collapsed_sections" : [],
316+ "name" : " Batches.ipynb" ,
317+ "provenance" : []
318+ },
304319 "kernelspec" : {
305320 "display_name" : " Python 3" ,
306321 "language" : " python" ,
317332 "nbconvert_exporter" : " python" ,
318333 "pygments_lexer" : " ipython3" ,
319334 "version" : " 3.8.5"
320- },
321- "colab" : {
322- "name" : " Batches.ipynb" ,
323- "provenance" : [],
324- "collapsed_sections" : []
325335 }
326336 },
327337 "nbformat" : 4 ,
328338 "nbformat_minor" : 5
329- }
339+ }
0 commit comments