@@ -181,7 +181,7 @@ class Analyze : TestBase() {
181181 // SampleStart
182182 df.min() // min of values per every comparable column
183183 df.min { age and weight } // min of all values in `age` and `weight`
184- df.minFor(skipNaN = true ) { age and weight } // min of values per `age` and `weight ` separately
184+ df.minFor(skipNaN = true ) { age and name.firstName } // min of values per `age` and `firstName ` separately
185185 df.minOf { (weight ? : 0 ) / age } // min of expression evaluated for every row
186186 df.minBy { age } // DataRow with minimal `age`
187187 // SampleEnd
@@ -205,7 +205,7 @@ class Analyze : TestBase() {
205205 // SampleStart
206206 df.median() // median of values per every comparable column
207207 df.median { age and weight } // median of all values in `age` and `weight`
208- df.medianFor(skipNaN = true ) { age and weight } // median of values per `age` and `weight ` separately
208+ df.medianFor(skipNaN = true ) { age and name.firstName } // median of values per `age` and `firstName ` separately
209209 df.medianOf { (weight ? : 0 ) / age } // median of expression evaluated for every row
210210 df.medianBy { age } // DataRow where the median age lies (lower-median for an even number of values)
211211 // SampleEnd
@@ -229,7 +229,7 @@ class Analyze : TestBase() {
229229 // SampleStart
230230 df.percentile(25.0 ) // 25th percentile of values per every comparable column
231231 df.percentile(75.0 ) { age and weight } // 75th percentile of all values in `age` and `weight`
232- df.percentileFor(50.0 , skipNaN = true ) { age and weight } // 50th percentile of values per `age` and `weight ` separately
232+ df.percentileFor(50.0 , skipNaN = true ) { age and name.firstName } // 50th percentile of values per `age` and `firstName ` separately
233233 df.percentileOf(75.0 ) { (weight ? : 0 ) / age } // 75th percentile of expression evaluated for every row
234234 df.percentileBy(25.0 ) { age } // DataRow where the 25th percentile of `age` lies (index rounded using R3)
235235 // SampleEnd
@@ -438,7 +438,7 @@ class Analyze : TestBase() {
438438 fun columnsFor_properties () {
439439 // SampleStart
440440 df.minFor { colsOf<Int >() }
441- df.maxFor { name.firstName and name.lastName }
441+ df.maxFor { name.firstName and age }
442442 df.sumFor { age and weight }
443443 df.meanFor { cols(1 , 3 ).asNumbers() }
444444 df.medianFor { name.allCols().asComparable() }
@@ -457,7 +457,7 @@ class Analyze : TestBase() {
457457
458458 df.minFor { colsOf<Int >() }
459459
460- df.maxFor { firstName and lastName }
460+ df.maxFor { firstName and age }
461461 // or
462462 df.maxFor(firstName, lastName)
463463
@@ -475,7 +475,7 @@ class Analyze : TestBase() {
475475 fun columnsFor_strings () {
476476 // SampleStart
477477 df.minFor { colsOf<Int >() }
478- df.maxFor { " name" [" firstName" ].asComparable() and " name " [ " lastName " ].asComparable () }
478+ df.maxFor { " name" [" firstName" ].asComparable() and " age " < Int > () }
479479
480480 df.sumFor(" age" , " weight" )
481481 // or
0 commit comments