@@ -38,7 +38,7 @@ import kotlin.reflect.KProperty
3838/* *
3939 * Groups the rows of this [DataFrame] based on the values in one or more specified [key columns][cols].
4040 * Each unique value in a key column — or a unique tuple of values for multiple columns —
41- * defines a group consisting of all rows where the column(s) contain that value combination.
41+ * defines the group consisting of all rows where the column(s) contain that value combination.
4242 *
4343 * Returns a [GroupBy] — a dataframe-like structure that contains all unique combinations of key values
4444 * along with the corresponding groups of rows (each represented as a [DataFrame]).
@@ -76,40 +76,40 @@ internal interface GroupByDocs {
7676 *
7777 * ### Create and transform [GroupBy]
7878 *
79- * [**`groupBy`**][groupBy]**`(`**`moveToTop: `[`Boolean`][Boolean]**` = true) { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` }`**
79+ * [**`groupBy`**][groupBy]**`(`**`moveToTop: `[`Boolean`][Boolean]**` = true) { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` }`**
8080 *
8181 * {@include [Indent]}
82- * `\[ `__`.`__[**`sortByGroup`**][GroupBy.sortByGroup]**`() `**
82+ * `\[ `__`.`__[**`sortByGroup`**][GroupBy.sortByGroup]**`() `**`]`
8383 *
8484 * {@include [Indent]}
85- * `| `__`.`__[**`sortByGroupDesc`**][GroupBy.sortByGroupDesc]**`() `**
85+ * `\[ `__`.`__[**`sortByGroupDesc`**][GroupBy.sortByGroupDesc]**`() `**`]`
8686 *
8787 * {@include [Indent]}
88- * `| `__`.`__[**`sortByCount`**][GroupBy.sortByCount]**`() `**
88+ * `\[ `__`.`__[**`sortByCount`**][GroupBy.sortByCount]**`() `**`]`
8989 *
9090 * {@include [Indent]}
91- * `| `__`.`__[**`sortByCountAsc`**][GroupBy.sortByCountAsc]**`() `**
91+ * `\[ `__`.`__[**`sortByCountAsc`**][GroupBy.sortByCountAsc]**`() `**`]`
9292 *
9393 * {@include [Indent]}
94- * `| `__`.`__[**`sortByKey`**][GroupBy.sortByKey]**`() `**
94+ * `\[ `__`.`__[**`sortByKey`**][GroupBy.sortByKey]**`() `**`]`
9595 *
9696 * {@include [Indent]}
97- * `| `__`.`__[**`sortByKeyDesc`**][GroupBy.sortByKeyDesc]**`() `**`]`
97+ * `\[ `__`.`__[**`sortByKeyDesc`**][GroupBy.sortByKeyDesc]**`() `**`]`
9898 *
9999 * {@include [Indent]}
100- * `\[ `__`.`__[**`sortBy`**][GroupBy.sortBy]**` { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` } `**
100+ * `\[ `__`.`__[**`sortBy`**][GroupBy.sortBy]**` { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` } `**`]`
101101 *
102102 * {@include [Indent]}
103- * `| `__`.`__[**`sortByDesc`**][GroupBy.sortByDesc]**` { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` } `**`]`
103+ * `\[ `__`.`__[**`sortByDesc`**][GroupBy.sortByDesc]**` { `**`columns: `[`ColumnsSelector`][ColumnsSelector]**` } `**`]`
104104 *
105105 * {@include [Indent]}
106- * `\[ `__`.`__[**`updateGroups`**][GroupBy.updateGroups]**` { `**`frameExpression`**` } `**`]`
106+ * `\[ `__`.`__[**`updateGroups`**][GroupBy.updateGroups]**` { `**`frameExpression`**` } `**`]`
107107 *
108108 * {@include [Indent]}
109- * `\[ `__`.`__[**`filter`**][GroupBy.filter]**` { `**`predicate: `[`GroupedRowFilter`][GroupedRowFilter]**` } `**`]`
109+ * `\[ `__`.`__[**`filter`**][GroupBy.filter]**` { `**`predicate: `[`GroupedRowFilter`][GroupedRowFilter]**` } `**`]`
110110 *
111111 * {@include [Indent]}
112- * `\[ `__`.`__[**`add`**][GroupBy.add]**`(`**`column: `[`DataColumn`][DataColumn]**`) { `**`rowExpression: `[`RowExpression`][RowExpression]**` } `**`]`
112+ * `\[ `__`.`__[**`add`**][GroupBy.add]**`(`**`column: `[`DataColumn`][DataColumn]**`) { `**`rowExpression: `[`RowExpression`][RowExpression]**` } `**`]`
113113 *
114114 * ### Reduce [GroupBy] into [DataFrame]
115115 *
@@ -120,10 +120,10 @@ internal interface GroupByDocs {
120120 * `| `__`.`__[**`maxBy`**][GroupBy.maxBy]**` { `**`column: `[`ColumnSelector`][ColumnSelector]**` }`**
121121 *
122122 * {@include [Indent]}
123- * `| `__`.`__[**`first`**][GroupBy.first]` \[ `**` { `**`rowCondition: `[`RowFilter`][RowFilter]**` } `**`]`
123+ * `| `__`.`__[**`first`**][GroupBy.first]` \[ `**` { `**`rowCondition: `[`RowFilter`][RowFilter]**` } `**`]`
124124 *
125125 * {@include [Indent]}
126- * `| `__`.`__[**`last`**][GroupBy.last]` \[ `**`{ `**`rowCondition: `[`RowFilter`][RowFilter]**` } `**`]`
126+ * `| `__`.`__[**`last`**][GroupBy.last]` \[ `**` { `**`rowCondition: `[`RowFilter`][RowFilter]**` } `**`]`
127127 *
128128 * {@include [Indent]}
129129 * __`.`__[**`concat`**][ReducedGroupBy.concat]**`() `**
@@ -207,7 +207,7 @@ internal interface GroupByDocs {
207207 * * [sortBy][GroupBy.sortBy] / [sortByDesc][GroupBy.sortByDesc] — sorts the **order of rows within each group**
208208 * by one or more column values;
209209 * * [updateGroups][GroupBy.updateGroups] — transforms each group into a new one;
210- * * [filter][GroupBy.filter] — filters group rows by the given predicate (as usual [DataFrame.filter]).
210+ * * [filter][GroupBy.filter] — filters group rows by the given predicate (as usual [DataFrame.filter]);
211211 * * [add][GroupBy.add] — adds a new column to each group.
212212 *
213213 * Each method returns a new [GroupBy] with updated group order or modified group content.
@@ -363,7 +363,7 @@ public fun <T> DataFrame<T>.groupBy(vararg cols: AnyColumnReference, moveToTop:
363363 * @include [PivotGroupByDocs.CommonDescription]
364364 */
365365@ExcludeFromSources
366- internal interface GroupByForPivotDocs
366+ private interface GroupByForPivotDocs
367367
368368/* *
369369 * {@include [GroupByForPivotDocs]}
@@ -479,7 +479,7 @@ public val <T, G> GroupedDataRow<T, G>.group: DataFrame<G>
479479public data class GroupWithKey <T , G >(val key : DataRow <T >, val group : DataFrame <G >)
480480
481481/* *
482- * A dataframe-like structure that contains all unique combinations of key values
482+ * A dataframe-like structure that contains all unique combinations of key- values
483483 * along with the corresponding groups of rows (each represented as a [DataFrame]).
484484 *
485485 * Consists of two main parts:
0 commit comments