|
| 1 | +# src/neuromorphic_analytics/npae.py |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import logging |
| 5 | +from .model import SpikingNeuralNetworkModel |
| 6 | +from .data_pipeline import DataPipeline |
| 7 | + |
| 8 | +# Set up logging for the NPAE |
| 9 | +logger = logging.getLogger(__name__) |
| 10 | + |
| 11 | +class NeuromorphicPredictiveAnalyticsEngine: |
| 12 | + def __init__(self, model_params, data_sources): |
| 13 | + """ |
| 14 | + Initialize the Neuromorphic Predictive Analytics Engine. |
| 15 | +
|
| 16 | + Parameters: |
| 17 | + - model_params (dict): Parameters for the spiking neural network model. |
| 18 | + - data_sources (list): List of data sources to be processed (e.g., Market Analysis, IoT). |
| 19 | + """ |
| 20 | + self.model = SpikingNeuralNetworkModel(**model_params) |
| 21 | + self.data_pipeline = DataPipeline(data_sources) |
| 22 | + logger.info("Neuromorphic Predictive Analytics Engine initialized.") |
| 23 | + |
| 24 | + def process_data(self): |
| 25 | + """ |
| 26 | + Process data from the defined sources and make predictions. |
| 27 | + """ |
| 28 | + logger.info("Starting data processing...") |
| 29 | + raw_data = self.data_pipeline.collect_data() |
| 30 | + preprocessed_data = self.data_pipeline.preprocess_data(raw_data) |
| 31 | + |
| 32 | + predictions = [] |
| 33 | + for data in preprocessed_data: |
| 34 | + prediction = self.model.predict(data) |
| 35 | + predictions.append(prediction) |
| 36 | + logger.info(f"Processed data: {data}, Prediction: {prediction}") |
| 37 | + |
| 38 | + return predictions |
| 39 | + |
| 40 | + def evaluate_model(self, test_data, true_labels): |
| 41 | + """ |
| 42 | + Evaluate the performance of the model on test data. |
| 43 | +
|
| 44 | + Parameters: |
| 45 | + - test_data (list): The data to test the model on. |
| 46 | + - true_labels (list): The true labels for the test data. |
| 47 | +
|
| 48 | + Returns: |
| 49 | + - float: The accuracy of the model on the test data. |
| 50 | + """ |
| 51 | + accuracy = self.model.evaluate(test_data, true_labels) |
| 52 | + logger.info(f"Model evaluation completed. Accuracy: {accuracy:.2f}") |
| 53 | + return accuracy |
| 54 | + |
| 55 | + def run(self): |
| 56 | + """ |
| 57 | + Run the NPAE to continuously process data and make predictions. |
| 58 | + """ |
| 59 | + logger.info("Running the Neuromorphic Predictive Analytics Engine...") |
| 60 | + while True: |
| 61 | + predictions = self.process_data() |
| 62 | + # Here you can implement logic to handle predictions, e.g., storing them or triggering alerts |
| 63 | + # For demonstration, we will just log the predictions |
| 64 | + logger.info(f"Current predictions: {predictions}") |
| 65 | + |
| 66 | + # Sleep or wait for the next data collection cycle |
| 67 | + # In a real implementation, you might want to use a more sophisticated scheduling mechanism |
| 68 | + break # Remove this break for continuous operation in a real scenario |
0 commit comments