Skip to content

Commit d9125e0

Browse files
authored
Create npae.py
1 parent 43f9092 commit d9125e0

File tree

1 file changed

+68
-0
lines changed

1 file changed

+68
-0
lines changed

src/neuromorphic_analytics/npae.py

Lines changed: 68 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,68 @@
1+
# src/neuromorphic_analytics/npae.py
2+
3+
import numpy as np
4+
import logging
5+
from .model import SpikingNeuralNetworkModel
6+
from .data_pipeline import DataPipeline
7+
8+
# Set up logging for the NPAE
9+
logger = logging.getLogger(__name__)
10+
11+
class NeuromorphicPredictiveAnalyticsEngine:
12+
def __init__(self, model_params, data_sources):
13+
"""
14+
Initialize the Neuromorphic Predictive Analytics Engine.
15+
16+
Parameters:
17+
- model_params (dict): Parameters for the spiking neural network model.
18+
- data_sources (list): List of data sources to be processed (e.g., Market Analysis, IoT).
19+
"""
20+
self.model = SpikingNeuralNetworkModel(**model_params)
21+
self.data_pipeline = DataPipeline(data_sources)
22+
logger.info("Neuromorphic Predictive Analytics Engine initialized.")
23+
24+
def process_data(self):
25+
"""
26+
Process data from the defined sources and make predictions.
27+
"""
28+
logger.info("Starting data processing...")
29+
raw_data = self.data_pipeline.collect_data()
30+
preprocessed_data = self.data_pipeline.preprocess_data(raw_data)
31+
32+
predictions = []
33+
for data in preprocessed_data:
34+
prediction = self.model.predict(data)
35+
predictions.append(prediction)
36+
logger.info(f"Processed data: {data}, Prediction: {prediction}")
37+
38+
return predictions
39+
40+
def evaluate_model(self, test_data, true_labels):
41+
"""
42+
Evaluate the performance of the model on test data.
43+
44+
Parameters:
45+
- test_data (list): The data to test the model on.
46+
- true_labels (list): The true labels for the test data.
47+
48+
Returns:
49+
- float: The accuracy of the model on the test data.
50+
"""
51+
accuracy = self.model.evaluate(test_data, true_labels)
52+
logger.info(f"Model evaluation completed. Accuracy: {accuracy:.2f}")
53+
return accuracy
54+
55+
def run(self):
56+
"""
57+
Run the NPAE to continuously process data and make predictions.
58+
"""
59+
logger.info("Running the Neuromorphic Predictive Analytics Engine...")
60+
while True:
61+
predictions = self.process_data()
62+
# Here you can implement logic to handle predictions, e.g., storing them or triggering alerts
63+
# For demonstration, we will just log the predictions
64+
logger.info(f"Current predictions: {predictions}")
65+
66+
# Sleep or wait for the next data collection cycle
67+
# In a real implementation, you might want to use a more sophisticated scheduling mechanism
68+
break # Remove this break for continuous operation in a real scenario

0 commit comments

Comments
 (0)