Skip to content

Commit c0a45c9

Browse files
authored
Create data_pipeline.py
1 parent d9125e0 commit c0a45c9

File tree

1 file changed

+76
-0
lines changed

1 file changed

+76
-0
lines changed
Lines changed: 76 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,76 @@
1+
# src/neuromorphic_analytics/data_pipeline.py
2+
3+
import numpy as np
4+
import logging
5+
6+
# Set up logging for the Data Pipeline
7+
logger = logging.getLogger(__name__)
8+
9+
class DataPipeline:
10+
def __init__(self, data_sources):
11+
"""
12+
Initialize the Data Pipeline.
13+
14+
Parameters:
15+
- data_sources (list): List of data sources to be processed (e.g., Market Analysis, IoT).
16+
"""
17+
self.data_sources = data_sources
18+
logger.info("Data Pipeline initialized with sources: %s", self.data_sources)
19+
20+
def collect_data(self):
21+
"""
22+
Collect data from the defined sources.
23+
24+
Returns:
25+
- list: Collected raw data from all sources.
26+
"""
27+
raw_data = []
28+
for source in self.data_sources:
29+
data = self._fetch_data_from_source(source)
30+
raw_data.extend(data)
31+
logger.info("Collected data from %s: %s", source, data)
32+
return raw_data
33+
34+
def _fetch_data_from_source(self, source):
35+
"""
36+
Simulate fetching data from a specific source.
37+
38+
Parameters:
39+
- source (str): The data source to fetch data from.
40+
41+
Returns:
42+
- list: Simulated data from the source.
43+
"""
44+
# In a real implementation, this would involve API calls, database queries, etc.
45+
# Here we simulate data fetching with random numbers for demonstration purposes.
46+
simulated_data = np.random.rand(5).tolist() # Simulate 5 data points
47+
return simulated_data
48+
49+
def preprocess_data(self, raw_data):
50+
"""
51+
Preprocess the collected raw data.
52+
53+
Parameters:
54+
- raw_data (list): The raw data to preprocess.
55+
56+
Returns:
57+
- list: Preprocessed data ready for analysis.
58+
"""
59+
logger.info("Starting data preprocessing...")
60+
preprocessed_data = [self._normalize(data) for data in raw_data]
61+
logger.info("Data preprocessing completed.")
62+
return preprocessed_data
63+
64+
def _normalize(self, data):
65+
"""
66+
Normalize a single data point.
67+
68+
Parameters:
69+
- data (float): The data point to normalize.
70+
71+
Returns:
72+
- float: Normalized data point.
73+
"""
74+
normalized_data = (data - np.min(data)) / (np.max(data) - np.min(data)) if np.max(data) != np.min(data) else 0
75+
logger.debug("Normalized data point: %s to %s", data, normalized_data)
76+
return normalized_data

0 commit comments

Comments
 (0)