|
| 1 | +# src/neuromorphic_analytics/data_pipeline.py |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import logging |
| 5 | + |
| 6 | +# Set up logging for the Data Pipeline |
| 7 | +logger = logging.getLogger(__name__) |
| 8 | + |
| 9 | +class DataPipeline: |
| 10 | + def __init__(self, data_sources): |
| 11 | + """ |
| 12 | + Initialize the Data Pipeline. |
| 13 | +
|
| 14 | + Parameters: |
| 15 | + - data_sources (list): List of data sources to be processed (e.g., Market Analysis, IoT). |
| 16 | + """ |
| 17 | + self.data_sources = data_sources |
| 18 | + logger.info("Data Pipeline initialized with sources: %s", self.data_sources) |
| 19 | + |
| 20 | + def collect_data(self): |
| 21 | + """ |
| 22 | + Collect data from the defined sources. |
| 23 | +
|
| 24 | + Returns: |
| 25 | + - list: Collected raw data from all sources. |
| 26 | + """ |
| 27 | + raw_data = [] |
| 28 | + for source in self.data_sources: |
| 29 | + data = self._fetch_data_from_source(source) |
| 30 | + raw_data.extend(data) |
| 31 | + logger.info("Collected data from %s: %s", source, data) |
| 32 | + return raw_data |
| 33 | + |
| 34 | + def _fetch_data_from_source(self, source): |
| 35 | + """ |
| 36 | + Simulate fetching data from a specific source. |
| 37 | +
|
| 38 | + Parameters: |
| 39 | + - source (str): The data source to fetch data from. |
| 40 | +
|
| 41 | + Returns: |
| 42 | + - list: Simulated data from the source. |
| 43 | + """ |
| 44 | + # In a real implementation, this would involve API calls, database queries, etc. |
| 45 | + # Here we simulate data fetching with random numbers for demonstration purposes. |
| 46 | + simulated_data = np.random.rand(5).tolist() # Simulate 5 data points |
| 47 | + return simulated_data |
| 48 | + |
| 49 | + def preprocess_data(self, raw_data): |
| 50 | + """ |
| 51 | + Preprocess the collected raw data. |
| 52 | +
|
| 53 | + Parameters: |
| 54 | + - raw_data (list): The raw data to preprocess. |
| 55 | +
|
| 56 | + Returns: |
| 57 | + - list: Preprocessed data ready for analysis. |
| 58 | + """ |
| 59 | + logger.info("Starting data preprocessing...") |
| 60 | + preprocessed_data = [self._normalize(data) for data in raw_data] |
| 61 | + logger.info("Data preprocessing completed.") |
| 62 | + return preprocessed_data |
| 63 | + |
| 64 | + def _normalize(self, data): |
| 65 | + """ |
| 66 | + Normalize a single data point. |
| 67 | +
|
| 68 | + Parameters: |
| 69 | + - data (float): The data point to normalize. |
| 70 | +
|
| 71 | + Returns: |
| 72 | + - float: Normalized data point. |
| 73 | + """ |
| 74 | + normalized_data = (data - np.min(data)) / (np.max(data) - np.min(data)) if np.max(data) != np.min(data) else 0 |
| 75 | + logger.debug("Normalized data point: %s to %s", data, normalized_data) |
| 76 | + return normalized_data |
0 commit comments