|
| 1 | +# src/quantum_consensus/utils.py |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import random |
| 5 | +import logging |
| 6 | + |
| 7 | +# Set up logging for the utility functions |
| 8 | +logger = logging.getLogger(__name__) |
| 9 | + |
| 10 | +def generate_random_state(dimensions=2): |
| 11 | + """ |
| 12 | + Generate a random quantum state. |
| 13 | +
|
| 14 | + Parameters: |
| 15 | + - dimensions (int): The dimensions of the quantum state (default is 2 for a qubit). |
| 16 | +
|
| 17 | + Returns: |
| 18 | + - np.ndarray: A normalized random quantum state. |
| 19 | + """ |
| 20 | + state = np.random.rand(dimensions) |
| 21 | + normalized_state = state / np.linalg.norm(state) |
| 22 | + logger.info(f"Generated random quantum state: {normalized_state}") |
| 23 | + return normalized_state |
| 24 | + |
| 25 | +def measure_state(state): |
| 26 | + """ |
| 27 | + Measure a quantum state. |
| 28 | +
|
| 29 | + Parameters: |
| 30 | + - state (np.ndarray): The quantum state to measure. |
| 31 | +
|
| 32 | + Returns: |
| 33 | + - int: The result of the measurement (0 or 1 for a qubit). |
| 34 | + """ |
| 35 | + probabilities = np.abs(state) ** 2 |
| 36 | + measurement_result = np.random.choice(len(state), p=probabilities) |
| 37 | + logger.info(f"Measured state: {state}, Result: {measurement_result}") |
| 38 | + return measurement_result |
| 39 | + |
| 40 | +def entangle_states(state1, state2): |
| 41 | + """ |
| 42 | + Create an entangled state from two quantum states. |
| 43 | +
|
| 44 | + Parameters: |
| 45 | + - state1 (np.ndarray): The first quantum state. |
| 46 | + - state2 (np.ndarray): The second quantum state. |
| 47 | +
|
| 48 | + Returns: |
| 49 | + - np.ndarray: The resulting entangled state. |
| 50 | + """ |
| 51 | + # Simple tensor product to create an entangled state |
| 52 | + entangled_state = np.kron(state1, state2) |
| 53 | + logger.info(f"Created entangled state from {state1} and {state2}: {entangled_state}") |
| 54 | + return entangled_state |
| 55 | + |
| 56 | +def apply_unitary(state, unitary): |
| 57 | + """ |
| 58 | + Apply a unitary operation to a quantum state. |
| 59 | +
|
| 60 | + Parameters: |
| 61 | + - state (np.ndarray): The quantum state to which the unitary is applied. |
| 62 | + - unitary (np.ndarray): The unitary matrix to apply. |
| 63 | +
|
| 64 | + Returns: |
| 65 | + - np.ndarray: The resulting quantum state after applying the unitary. |
| 66 | + """ |
| 67 | + new_state = np.dot(unitary, state) |
| 68 | + logger.info(f"Applied unitary: {unitary} to state: {state}, Resulting state: {new_state}") |
| 69 | + return new_state |
| 70 | + |
| 71 | +def random_unitary(dimensions=2): |
| 72 | + """ |
| 73 | + Generate a random unitary matrix. |
| 74 | +
|
| 75 | + Parameters: |
| 76 | + - dimensions (int): The dimensions of the unitary matrix (default is 2 for a qubit). |
| 77 | +
|
| 78 | + Returns: |
| 79 | + - np.ndarray: A random unitary matrix. |
| 80 | + """ |
| 81 | + # Generate a random unitary matrix using QR decomposition |
| 82 | + random_matrix = np.random.rand(dimensions, dimensions) |
| 83 | + q, r = np.linalg.qr(random_matrix) |
| 84 | + unitary = q * (np.diag(np.sign(np.diag(r)))) # Ensure the unitary is properly normalized |
| 85 | + logger.info(f"Generated random unitary matrix: {unitary}") |
| 86 | + return unitary |
0 commit comments