Skip to content

Commit 0aaedcb

Browse files
authored
Create model.py
1 parent c0a45c9 commit 0aaedcb

File tree

1 file changed

+70
-0
lines changed

1 file changed

+70
-0
lines changed
Lines changed: 70 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,70 @@
1+
# src/neuromorphic_analytics/model.py
2+
3+
import numpy as np
4+
import logging
5+
6+
# Set up logging for the Spiking Neural Network Model
7+
logger = logging.getLogger(__name__)
8+
9+
class SpikingNeuralNetworkModel:
10+
def __init__(self, num_neurons, threshold=1.0, decay=0.9):
11+
"""
12+
Initialize the Spiking Neural Network Model.
13+
14+
Parameters:
15+
- num_neurons (int): Number of neurons in the network.
16+
- threshold (float): The threshold for neuron firing.
17+
- decay (float): The decay factor for the neuron's membrane potential.
18+
"""
19+
self.num_neurons = num_neurons
20+
self.threshold = threshold
21+
self.decay = decay
22+
self.membrane_potential = np.zeros(num_neurons) # Initialize membrane potential
23+
logger.info("Spiking Neural Network Model initialized with %d neurons.", num_neurons)
24+
25+
def predict(self, input_data):
26+
"""
27+
Make a prediction based on the input data.
28+
29+
Parameters:
30+
- input_data (list or np.ndarray): The input data for prediction.
31+
32+
Returns:
33+
- list: The output spikes from the network.
34+
"""
35+
logger.info("Making prediction with input data: %s", input_data)
36+
input_data = np.array(input_data)
37+
self.membrane_potential += input_data # Update membrane potential with input
38+
39+
# Check for spikes
40+
spikes = self.membrane_potential >= self.threshold
41+
self.membrane_potential[spikes] = 0 # Reset potential for neurons that spiked
42+
43+
# Apply decay to the membrane potential
44+
self.membrane_potential *= self.decay
45+
46+
logger.debug("Membrane potential after prediction: %s", self.membrane_potential)
47+
return spikes.astype(int).tolist() # Return spikes as a list of 0s and 1s
48+
49+
def evaluate(self, test_data, true_labels):
50+
"""
51+
Evaluate the model's performance on test data.
52+
53+
Parameters:
54+
- test_data (list of lists or np.ndarray): The data to test the model on.
55+
- true_labels (list): The true labels for the test data.
56+
57+
Returns:
58+
- float: The accuracy of the model on the test data.
59+
"""
60+
correct_predictions = 0
61+
total_predictions = len(test_data)
62+
63+
for data, true_label in zip(test_data, true_labels):
64+
prediction = self.predict(data)
65+
if prediction == true_label:
66+
correct_predictions += 1
67+
68+
accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
69+
logger.info("Model evaluation completed. Accuracy: %.2f", accuracy)
70+
return accuracy

0 commit comments

Comments
 (0)