@@ -15,27 +15,27 @@ function kron(A::AbstractLinearOperator, B::AbstractLinearOperator)
1515 S = promote_type (T, eltype (x))
1616 X = reshape (convert (Vector{S}, x), q, n)
1717 if β == zero (T2)
18- res .= Matrix (B * X * transpose (A))[:]
18+ res .= α .* Matrix (B * X * transpose (A))[:]
1919 else
20- res .= Matrix (B * X * transpose (A))[:] .+ β .* res
20+ res .= α .* Matrix (B * X * transpose (A))[:] .+ β .* res
2121 end
2222 end
2323 function tprod! (res, x, α, β:: T2 ) where {T2}
2424 S = promote_type (T, eltype (x))
2525 X = reshape (convert (Vector{S}, x), p, m)
2626 if β == zero (T2)
27- res .= Matrix (transpose (B) * X * A)[:]
27+ res .= α .* Matrix (transpose (B) * X * A)[:]
2828 else
29- res .= Matrix (transpose (B) * X * A)[:] .+ β .* res
29+ res .= α .* Matrix (transpose (B) * X * A)[:] .+ β .* res
3030 end
3131 end
3232 function ctprod! (res, x, α, β:: T2 ) where {T2}
3333 S = promote_type (T, eltype (x))
3434 X = reshape (convert (Vector{S}, x), p, m)
3535 if β == zero (T2)
36- res .= Matrix (B' * X * conj (A))[:]
36+ res .= α .* Matrix (B' * X * conj (A))[:]
3737 else
38- res .= Matrix (B' * X * conj (A))[:] .+ β .* res
38+ res .= α .* Matrix (B' * X * conj (A))[:] .+ β .* res
3939 end
4040 end
4141 symm = issymmetric (A) && issymmetric (B)
0 commit comments