@@ -11,7 +11,7 @@ import Rotations as _Rot
1111
1212@defVariable TranslationGroup2 TranslationGroup (2 ) @SVector [0.0 , 0.0 ]
1313
14- @defVariable SpecialEuclidean2 SpecialEuclidean (2 ) ArrayPartition (@SVector ([0.0 ,0.0 ]), @SMatrix ([1.0 0.0 ; 0.0 1.0 ]))
14+ @defVariable SpecialEuclidean2 SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ) ArrayPartition (@SVector ([0.0 ,0.0 ]), @SMatrix ([1.0 0.0 ; 0.0 1.0 ]))
1515# @defVariable SpecialEuclidean2 SpecialEuclidean(2) ArrayPartition([0.0,0.0], [1.0 0.0; 0.0 1.0])
1616
1717# #
@@ -20,7 +20,7 @@ import Rotations as _Rot
2020# #
2121
2222M = getManifold (SpecialEuclidean2)
23- @test M == SpecialEuclidean (2 )
23+ @test M == SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () )
2424pT = getPointType (SpecialEuclidean2)
2525# @test pT == ArrayPartition{Float64,Tuple{Vector{Float64}, Matrix{Float64}}}
2626# @test pT == ArrayPartition{Tuple{MVector{2, Float64}, MMatrix{2, 2, Float64, 4}}}
@@ -38,8 +38,8 @@ v0 = addVariable!(fg, :x0, SpecialEuclidean2)
3838
3939# mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01]))
4040# mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal(Diagonal(abs2.([0.01, 0.01, 0.01]))))
41- mp = ManifoldPrior (SpecialEuclidean (2 ), ArrayPartition ([0.0 ,0.0 ], [1.0 0.0 ; 0.0 1. ]), MvNormal (Diagonal (abs2 .([0.01 , 0.01 , 0.01 ]))))
42- mp = ManifoldPrior (SpecialEuclidean (2 ), ArrayPartition (SA[0.0 ,0.0 ], SA[1.0 0.0 ; 0.0 1. ]), MvNormal (Diagonal (abs2 .(SA[0.01 , 0.01 , 0.01 ]))))
41+ mp = ManifoldPrior (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), ArrayPartition ([0.0 ,0.0 ], [1.0 0.0 ; 0.0 1. ]), MvNormal (Diagonal (abs2 .([0.01 , 0.01 , 0.01 ]))))
42+ mp = ManifoldPrior (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), ArrayPartition (SA[0.0 ,0.0 ], SA[1.0 0.0 ; 0.0 1. ]), MvNormal (Diagonal (abs2 .(SA[0.01 , 0.01 , 0.01 ]))))
4343p = addFactor! (fg, [:x0 ], mp)
4444
4545
@@ -54,7 +54,7 @@ vnd = getVariableSolverData(fg, :x0)
5454
5555# #
5656v1 = addVariable! (fg, :x1 , SpecialEuclidean2)
57- mf = ManifoldFactor (SpecialEuclidean (2 ), MvNormal (SA[1 ,2 ,pi / 4 ], SA[0.01 ,0.01 ,0.01 ]))
57+ mf = ManifoldFactor (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), MvNormal (SA[1 ,2 ,pi / 4 ], SA[0.01 ,0.01 ,0.01 ]))
5858f = addFactor! (fg, [:x0 , :x1 ], mf)
5959
6060doautoinit! (fg, :x1 )
@@ -77,7 +77,7 @@ vnd = getVariableSolverData(fg, :x1)
7777@test all (is_point .(Ref (M), vnd. val))
7878
7979v1 = addVariable! (fg, :x2 , SpecialEuclidean2)
80- mf = ManifoldFactor (SpecialEuclidean (2 ), MvNormal (SA[1 ,2 ,pi / 4 ], SA[0.01 ,0.01 ,0.01 ]))
80+ mf = ManifoldFactor (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), MvNormal (SA[1 ,2 ,pi / 4 ], SA[0.01 ,0.01 ,0.01 ]))
8181f = addFactor! (fg, [:x1 , :x2 ], mf)
8282
8383# #
@@ -140,7 +140,7 @@ struct ManifoldFactorSE2{T <: SamplableBelief} <: IIF.AbstractManifoldMinimize
140140end
141141
142142ManifoldFactorSE2 () = ManifoldFactorSE2 (MvNormal (Diagonal ([1 ,1 ,1 ])))
143- DFG. getManifold (:: ManifoldFactorSE2 ) = SpecialEuclidean (2 )
143+ DFG. getManifold (:: ManifoldFactorSE2 ) = SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () )
144144
145145IIF. selectFactorType (:: Type{<:SpecialEuclidean2} , :: Type{<:SpecialEuclidean2} ) = ManifoldFactorSE2
146146
@@ -168,7 +168,7 @@ M = getManifold(SpecialEuclidean2)
168168fg = initfg ()
169169v0 = addVariable! (fg, :x0 , SpecialEuclidean2)
170170
171- mp = ManifoldPrior (SpecialEuclidean (2 ), ArrayPartition (Vector ([10.0 ,10.0 ]), Matrix ([- 1.0 0.0 ; 0.0 - 1.0 ])), MvNormal ([0.1 , 0.1 , 0.01 ]))
171+ mp = ManifoldPrior (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), ArrayPartition (Vector ([10.0 ,10.0 ]), Matrix ([- 1.0 0.0 ; 0.0 - 1.0 ])), MvNormal ([0.1 , 0.1 , 0.01 ]))
172172p = addFactor! (fg, [:x0 ], mp)
173173
174174# #
@@ -177,16 +177,16 @@ for i in 0:5
177177 psym = Symbol (" x$i " )
178178 nsym = Symbol (" x$(i+ 1 ) " )
179179 addVariable! (fg, nsym, SpecialEuclidean2)
180- mf = ManifoldFactor (SpecialEuclidean (2 ), MvNormal ([10.0 ,0 ,pi / 3 ], [0.5 ,0.5 ,0.05 ]))
180+ mf = ManifoldFactor (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), MvNormal ([10.0 ,0 ,pi / 3 ], [0.5 ,0.5 ,0.05 ]))
181181 f = addFactor! (fg, [psym;nsym], mf)
182182end
183183
184184
185185addVariable! (fg, :l1 , SpecialEuclidean2, tags= [:LANDMARK ;])
186- mf = ManifoldFactor (SpecialEuclidean (2 ), MvNormal ([10.0 ,0 ,0 ], [0.1 ,0.1 ,0.01 ]))
186+ mf = ManifoldFactor (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), MvNormal ([10.0 ,0 ,0 ], [0.1 ,0.1 ,0.01 ]))
187187addFactor! (fg, [:x0 ; :l1 ], mf)
188188
189- mf = ManifoldFactor (SpecialEuclidean (2 ), MvNormal ([10.0 ,0 ,0 ], [0.1 ,0.1 ,0.01 ]))
189+ mf = ManifoldFactor (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), MvNormal ([10.0 ,0 ,0 ], [0.1 ,0.1 ,0.01 ]))
190190addFactor! (fg, [:x6 ; :l1 ], mf)
191191
192192# #
@@ -225,7 +225,7 @@ getSolverParams(fg).useMsgLikelihoods = true
225225addVariable! (fg, :x0 , SpecialEuclidean2)
226226addVariable! (fg, :x1 , SpecialEuclidean2)
227227
228- mp = ManifoldPrior (SpecialEuclidean (2 ), ArrayPartition (Vector ([10.0 ,10.0 ]), Matrix ([- 1.0 0.0 ; 0.0 - 1.0 ])), MvNormal (diagm ([0.1 , 0.1 , 0.01 ]. ^ 2 )))
228+ mp = ManifoldPrior (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), ArrayPartition (Vector ([10.0 ,10.0 ]), Matrix ([- 1.0 0.0 ; 0.0 - 1.0 ])), MvNormal (diagm ([0.1 , 0.1 , 0.01 ]. ^ 2 )))
229229p = addFactor! (fg, [:x0 ], mp)
230230
231231doautoinit! (fg,:x0 )
@@ -238,7 +238,7 @@ initAll!(fg)
238238
239239pred, meas = approxDeconv (fg, :x0x1f1 )
240240
241- @test mmd (SpecialEuclidean (2 ), pred, meas) < 1e-1
241+ @test mmd (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), pred, meas) < 1e-1
242242
243243p_t = map (x-> x. x[1 ], pred)
244244m_t = map (x-> x. x[1 ], meas)
@@ -278,7 +278,7 @@ DFG.getManifold(::ManiPose2Point2) = TranslationGroup(2)
278278# define the conditional probability constraint
279279function (cfo:: CalcFactor{<:ManiPose2Point2} )(measX, p, q)
280280 #
281- M = SpecialEuclidean (2 )
281+ M = SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () )
282282 q_SE = ArrayPartition (q, identity_element (SpecialOrthogonal (2 ), p. x[2 ]))
283283
284284 X_se2 = log (M, identity_element (M, p), Manifolds. compose (M, inv (M, p), q_SE))
@@ -288,7 +288,7 @@ function (cfo::CalcFactor{<:ManiPose2Point2})(measX, p, q)
288288end
289289
290290# #
291- @testset " Test SpecialEuclidean(2)" begin
291+ @testset " Test SpecialEuclidean(2; vectors=HybridTangentRepresentation() )" begin
292292# #
293293
294294# Base.convert(::Type{<:Tuple}, M::TranslationGroup{Tuple{2},ℝ}) = (:Euclid, :Euclid)
@@ -299,7 +299,7 @@ fg = initfg()
299299
300300v0 = addVariable! (fg, :x0 , SpecialEuclidean2)
301301
302- mp = ManifoldPrior (SpecialEuclidean (2 ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ]))
302+ mp = ManifoldPrior (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ]))
303303p = addFactor! (fg, [:x0 ], mp)
304304
305305# #
@@ -413,7 +413,7 @@ solveGraph!(fg; smtasks);
413413
414414# #
415415
416- mp = ManifoldPrior (SpecialEuclidean (2 ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ],[1 0 0 ;0 1 0 ;0 0 1. ]))
416+ mp = ManifoldPrior (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ],[1 0 0 ;0 1 0 ;0 0 1. ]))
417417f1 = addFactor! (fg, [:x0 ], mp, graphinit= false )
418418
419419@test length (ls (fg, :x0 )) == 2
@@ -471,15 +471,15 @@ f0 = addFactor!(fg, [:x0], pthru, graphinit=false)
471471
472472# # test the inference functions
473473addVariable! (fg, :x1 , SpecialEuclidean2)
474- # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01]))
475- mp = ManifoldPrior (SpecialEuclidean (2 ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ]))
474+ # mp = ManifoldPrior(SpecialEuclidean(2; vectors=HybridTangentRepresentation() ), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01]))
475+ mp = ManifoldPrior (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ]))
476476f1 = addFactor! (fg, [:x1 ], mp, graphinit= false )
477477
478478doautoinit! (fg, :x1 )
479479
480480# # connect with relative and check calculation size on x0
481481
482- mf = ManifoldFactor (SpecialEuclidean (2 ), MvNormal ([1 ,2 ,pi / 4 ], [0.01 ,0.01 ,0.01 ]))
482+ mf = ManifoldFactor (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), MvNormal ([1 ,2 ,pi / 4 ], [0.01 ,0.01 ,0.01 ]))
483483f2 = addFactor! (fg, [:x0 , :x1 ], mf, graphinit= false )
484484
485485# #
@@ -507,10 +507,10 @@ hmd = LevelSetGridNormal(img_, (x_,y_), 5.5, 0.1, N=120)
507507pthru = PartialPriorPassThrough (hmd, (1 ,2 ))
508508f0 = addFactor! (fg, [:x0 ], pthru, graphinit= false )
509509addVariable! (fg, :x1 , SpecialEuclidean2)
510- # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01]))
511- mp = ManifoldPrior (SpecialEuclidean (2 ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ]))
510+ # mp = ManifoldPrior(SpecialEuclidean(2; vectors=HybridTangentRepresentation() ), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01]))
511+ mp = ManifoldPrior (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ]))
512512f1 = addFactor! (fg, [:x1 ], mp, graphinit= false )
513- mf = ManifoldFactor (SpecialEuclidean (2 ), MvNormal ([1 ,2 ,pi / 4 ], [0.01 ,0.01 ,0.01 ]))
513+ mf = ManifoldFactor (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), MvNormal ([1 ,2 ,pi / 4 ], [0.01 ,0.01 ,0.01 ]))
514514f2 = addFactor! (fg, [:x0 , :x1 ], mf, graphinit= false )
515515
516516# #
@@ -531,16 +531,16 @@ initAll!(fg)
531531end
532532
533533
534- @testset " Test SpecialEuclidean(2) to TranslationGroup(2) multihypo" begin
534+ @testset " Test SpecialEuclidean(2; vectors=HybridTangentRepresentation() ) to TranslationGroup(2) multihypo" begin
535535# #
536536
537537fg = initfg ()
538538# fg.solverParams.attemptGradients=false
539539
540540v0 = addVariable! (fg, :x0 , SpecialEuclidean2)
541541
542- # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01]))
543- mp = ManifoldPrior (SpecialEuclidean (2 ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ]))
542+ # mp = ManifoldPrior(SpecialEuclidean(2; vectors=HybridTangentRepresentation() ), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01]))
543+ mp = ManifoldPrior (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ]))
544544p = addFactor! (fg, [:x0 ], mp)
545545
546546# #
@@ -552,7 +552,7 @@ f = addFactor!(fg, [:x0, :x1a, :x1b], mf; multihypo=[1,0.5,0.5])
552552solveTree! (fg)
553553
554554vnd = getVariableSolverData (fg, :x0 )
555- @test isapprox (SpecialEuclidean (2 ) , mean (SpecialEuclidean (2 ), vnd. val), ArrayPartition ([0.0 ,0.0 ], [1.0 0 ; 0 1 ]), atol= 0.1 )
555+ @test isapprox (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation ()) , mean (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), vnd. val), ArrayPartition ([0.0 ,0.0 ], [1.0 0 ; 0 1 ]), atol= 0.1 )
556556
557557# FIXME I would expect close to 50% of particles to land on the correct place
558558# Currently software works so that 33% should land there so testing 20 for now
@@ -573,8 +573,8 @@ addVariable!(fg, :x0, SpecialEuclidean2)
573573addVariable! (fg, :x1a , TranslationGroup2)
574574addVariable! (fg, :x1b , TranslationGroup2)
575575
576- # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([10, 10, 0.01]))
577- mp = ManifoldPrior (SpecialEuclidean (2 ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal (zeros (3 ),diagm ([10 , 10 , 0.01 ])))
576+ # mp = ManifoldPrior(SpecialEuclidean(2; vectors=HybridTangentRepresentation() ), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([10, 10, 0.01]))
577+ mp = ManifoldPrior (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal (zeros (3 ),diagm ([10 , 10 , 0.01 ])))
578578p = addFactor! (fg, [:x0 ], mp)
579579mp = ManifoldPrior (TranslationGroup (2 ), [1. ,0 ], MvNormal ([0.01 , 0.01 ]))
580580p = addFactor! (fg, [:x1a ], mp)
@@ -595,44 +595,44 @@ pnts = getPoints(fg, :x0)
595595@error " Invalid multihypo test"
596596if false
597597 # FIXME ManiPose2Point2 factor mean [1.,0] cannot go "backwards" from [0,0] to [-1,0] with covariance 0.01 -- wholly inconsistent test design
598- @test 10 < sum (isapprox .(Ref (SpecialEuclidean (2 )), pnts, Ref (ArrayPartition ([- 1.0 ,0.0 ], [1.0 0 ; 0 1 ])), atol= 0.5 ))
599- @test 10 < sum (isapprox .(Ref (SpecialEuclidean (2 )), pnts, Ref (ArrayPartition ([1.0 ,0.0 ], [1.0 0 ; 0 1 ])), atol= 0.5 ))
598+ @test 10 < sum (isapprox .(Ref (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () )), pnts, Ref (ArrayPartition ([- 1.0 ,0.0 ], [1.0 0 ; 0 1 ])), atol= 0.5 ))
599+ @test 10 < sum (isapprox .(Ref (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () )), pnts, Ref (ArrayPartition ([1.0 ,0.0 ], [1.0 0 ; 0 1 ])), atol= 0.5 ))
600600end
601601
602602# #
603603end
604604
605- @testset " Test SpecialEuclidean(2) to SpecialEuclidean(2) multihypo" begin
605+ @testset " Test SpecialEuclidean(2; vectors=HybridTangentRepresentation()) to SpecialEuclidean(2; vectors=HybridTangentRepresentation() ) multihypo" begin
606606# #
607607
608608fg = initfg ()
609609# fg.solverParams.attemptGradients=false
610610
611611v0 = addVariable! (fg, :x0 , SpecialEuclidean2)
612612
613- # mp = ManifoldPrior(SpecialEuclidean(2), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01]))
614- mp = ManifoldPrior (SpecialEuclidean (2 ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ]))
613+ # mp = ManifoldPrior(SpecialEuclidean(2; vectors=HybridTangentRepresentation() ), ArrayPartition(@MVector([0.0,0.0]), @MMatrix([1.0 0.0; 0.0 1.0])), MvNormal([0.01, 0.01, 0.01]))
614+ mp = ManifoldPrior (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), ArrayPartition (Vector ([0.0 ,0.0 ]), Matrix ([1.0 0.0 ; 0.0 1.0 ])), MvNormal ([0.01 , 0.01 , 0.01 ]))
615615p = addFactor! (fg, [:x0 ], mp)
616616
617617# #
618618addVariable! (fg, :x1a , SpecialEuclidean2)
619619addVariable! (fg, :x1b , SpecialEuclidean2)
620- mf = ManifoldFactor (SpecialEuclidean (2 ), MvNormal ([1 ,2 ,pi / 4 ], [0.01 ,0.01 ,0.01 ]))
620+ mf = ManifoldFactor (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), MvNormal ([1 ,2 ,pi / 4 ], [0.01 ,0.01 ,0.01 ]))
621621f = addFactor! (fg, [:x0 , :x1a , :x1b ], mf; multihypo= [1 ,0.5 ,0.5 ])
622622
623623solveTree! (fg)
624624
625625vnd = getVariableSolverData (fg, :x0 )
626- @test isapprox (SpecialEuclidean (2 ) , mean (SpecialEuclidean (2 ), vnd. val), ArrayPartition ([0.0 ,0.0 ], [1.0 0 ; 0 1 ]), atol= 0.1 )
626+ @test isapprox (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation ()) , mean (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () ), vnd. val), ArrayPartition ([0.0 ,0.0 ], [1.0 0 ; 0 1 ]), atol= 0.1 )
627627
628628# FIXME I would expect close to 50% of particles to land on the correct place
629629# Currently software works so that 33% should land there so testing 20 for now
630630pnt = getPoints (fg, :x1a )
631- @test sum (isapprox .(Ref (SpecialEuclidean (2 )), pnt, Ref (ArrayPartition ([1.0 ,2.0 ], [0.7071 - 0.7071 ; 0.7071 0.7071 ])), atol= 0.1 )) > 20
631+ @test sum (isapprox .(Ref (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () )), pnt, Ref (ArrayPartition ([1.0 ,2.0 ], [0.7071 - 0.7071 ; 0.7071 0.7071 ])), atol= 0.1 )) > 20
632632
633633# FIXME I would expect close to 50% of particles to land on the correct place
634634pnt = getPoints (fg, :x1b )
635- @test sum (isapprox .(Ref (SpecialEuclidean (2 )), pnt, Ref (ArrayPartition ([1.0 ,2.0 ], [0.7071 - 0.7071 ; 0.7071 0.7071 ])), atol= 0.1 )) > 20
635+ @test sum (isapprox .(Ref (SpecialEuclidean (2 ; vectors = HybridTangentRepresentation () )), pnt, Ref (ArrayPartition ([1.0 ,2.0 ], [0.7071 - 0.7071 ; 0.7071 0.7071 ])), atol= 0.1 )) > 20
636636
637637# #
638638end
0 commit comments