@@ -22,6 +22,10 @@ function compute_criterion_vec(
2222 - actual
2323end
2424
25+ function show (io:: IO , :: MIME"text/plain" , :: ObservedInformationPointwiseItemCategoryCriterion )
26+ println (io, " Observed pointwise item-category information" )
27+ end
28+
2529"""
2630See EmpiricalInformationPointwiseItemCategoryCriterion for more details.
2731"""
@@ -46,6 +50,11 @@ function compute_criterion_vec(
4650 - actual
4751end
4852
53+
54+ function show (io:: IO , :: MIME"text/plain" , :: RawEmpiricalInformationPointwiseItemCategoryCriterion )
55+ println (io, " Raw empirical pointwise item-category information" )
56+ end
57+
4958"""
5059In equation 10 of [1] we see that we can compute information using 2nd derivatives of log likelihood or 1st derivative squared.
5160For single categories, we need to an extra term which disappears when we calculate the total see [2].
@@ -95,6 +104,10 @@ function compute_criterion_vec(
95104 - actual
96105end
97106
107+ function show (io:: IO , :: MIME"text/plain" , :: EmpiricalInformationPointwiseItemCategoryCriterion )
108+ println (io, " Empirical pointwise item-category information" )
109+ end
110+
98111#=
99112"""
100113This implements Fisher information as a pointwise item criterion.
@@ -116,4 +129,17 @@ function compute_criterion(
116129 ability
117130)
118131 sum (compute_criterion_vec (tii. pcic, ir, ability))
132+ end
133+
134+ function show (io:: IO , :: MIME"text/plain" , rule:: TotalItemInformation )
135+ if rule. pcic isa ObservedInformationPointwiseItemCategoryCriterion
136+ println (io, " Observed pointwise item information" )
137+ elseif rule. pcic isa RawEmpiricalInformationPointwiseItemCategoryCriterion
138+ println (io, " Raw empirical pointwise item information" )
139+ elseif rule. pcic isa EmpiricalInformationPointwiseItemCategoryCriterion
140+ println (io, " Empirical pointwise item information" )
141+ else
142+ print (io, " Total " )
143+ show (io, MIME (" text/plain" ), rule. pcic)
144+ end
119145end
0 commit comments