@@ -247,41 +247,26 @@ _eigvals!(A::StridedMatrix; kwargs...) = _eigvals!(_schur!(A; kwargs..
247247_eigvals! (H:: HessenbergMatrix ; kwargs... ) = _eigvals! (_schur! (H; kwargs... ))
248248_eigvals! (H:: HessenbergFactorization ; kwargs... ) = _eigvals! (_schur! (H; kwargs... ))
249249
250- # Overload methods from LinearAlgebra to make them work generically
251- if VERSION > v " 1.2.0-DEV.0"
252- function LinearAlgebra. eigvals! (
253- A:: StridedMatrix ;
254- sortby:: Union{Function,Nothing} = LinearAlgebra. eigsortby,
255- kwargs... )
256-
257- if ishermitian (A)
258- return LinearAlgebra. sorteig! (eigvals! (Hermitian (A)), sortby)
259- end
260- LinearAlgebra. sorteig! (_eigvals! (A; kwargs... ), sortby)
261- end
262-
263- LinearAlgebra. eigvals! (
264- H:: HessenbergMatrix ;
265- sortby:: Union{Function,Nothing} = LinearAlgebra. eigsortby,
266- kwargs... ) = LinearAlgebra. sorteig! (_eigvals! (H; kwargs... ), sortby)
267-
268- LinearAlgebra. eigvals! (
269- H:: HessenbergFactorization ;
270- sortby:: Union{Function,Nothing} = LinearAlgebra. eigsortby,
271- kwargs... ) = LinearAlgebra. sorteig! (_eigvals! (H; kwargs... ), sortby)
272- else
273- function LinearAlgebra. eigvals! (A:: StridedMatrix ; kwargs... )
274- if ishermitian (A)
275- return eigvals! (Hermitian (A))
276- else
277- return _eigvals! (A; kwargs... )
278- end
250+ function LinearAlgebra. eigvals! (
251+ A:: StridedMatrix ;
252+ sortby:: Union{Function,Nothing} = LinearAlgebra. eigsortby,
253+ kwargs... )
254+
255+ if ishermitian (A)
256+ return LinearAlgebra. sorteig! (eigvals! (Hermitian (A)), sortby)
279257 end
258+ LinearAlgebra. sorteig! (_eigvals! (A; kwargs... ), sortby)
259+ end
280260
281- LinearAlgebra. eigvals! (H:: HessenbergMatrix ; kwargs... ) = _eigvals! (H; kwargs... )
261+ LinearAlgebra. eigvals! (
262+ H:: HessenbergMatrix ;
263+ sortby:: Union{Function,Nothing} = LinearAlgebra. eigsortby,
264+ kwargs... ) = LinearAlgebra. sorteig! (_eigvals! (H; kwargs... ), sortby)
282265
283- LinearAlgebra. eigvals! (H:: HessenbergFactorization ; kwargs... ) = _eigvals! (H; kwargs... )
284- end
266+ LinearAlgebra. eigvals! (
267+ H:: HessenbergFactorization ;
268+ sortby:: Union{Function,Nothing} = LinearAlgebra. eigsortby,
269+ kwargs... ) = LinearAlgebra. sorteig! (_eigvals! (H; kwargs... ), sortby)
285270
286271# To compute the eigenvalue of the pseudo triangular Schur matrix we just return
287272# the values of the 1x1 diagonal blocks and compute the eigenvalues of the 2x2
0 commit comments