@@ -19,9 +19,9 @@ function LinearAlgebra.ldiv!(H::HessenbergMatrix, B::AbstractVecOrMat)
1919 lmul! (G, view (Hd, 1 : n, i: n))
2020 lmul! (G, B)
2121 end
22- ldiv! (UpperTriangular (Hd), B)
22+ LinearAlgebra . ldiv! (UpperTriangular (Hd), B)
2323end
24- ( \ ) (H:: HessenbergMatrix , B:: AbstractVecOrMat ) = ldiv! (copy (H), copy (B))
24+ LinearAlgebra.: \ (H:: HessenbergMatrix , B:: AbstractVecOrMat ) = LinearAlgebra . ldiv! (copy (H), copy (B))
2525
2626# Hessenberg factorization
2727struct HessenbergFactorization{T,S<: StridedMatrix ,U} <: Factorization{T}
3232Base. copy (HF:: HessenbergFactorization{T,S,U} ) where {T,S,U} =
3333 HessenbergFactorization {T,S,U} (copy (HF. data), copy (HF. τ))
3434
35- function _hessenberg ! (A:: StridedMatrix{T} ) where {T}
35+ function hessenberg ! (A:: StridedMatrix{T} ) where {T}
3636 n = LinearAlgebra. checksquare (A)
3737 τ = Vector {Householder{T}} (undef, n - 1 )
3838 for i = 1 : (n- 1 )
@@ -45,7 +45,6 @@ function _hessenberg!(A::StridedMatrix{T}) where {T}
4545 end
4646 return HessenbergFactorization {T,typeof(A),eltype(τ)} (A, τ)
4747end
48- hessenberg! (A:: StridedMatrix ) = _hessenberg! (A)
4948
5049Base. size (H:: HessenbergFactorization , args... ) = size (H. data, args... )
5150
@@ -57,6 +56,8 @@ function Base.getproperty(F::HessenbergFactorization, s::Symbol)
5756 end
5857end
5958
59+ Base. propertynames (F:: HessenbergFactorization ) = (fieldnames (typeof (F))... , :H )
60+
6061# Schur
6162struct Schur{T,S<: StridedMatrix } <: Factorization{T}
6263 data:: S
0 commit comments