@@ -161,21 +161,6 @@ function value_and_hessian(ab::AbstractBackend, f, x)
161161 return value, hess
162162end
163163
164- function value_and_hessian (ab:: HigherOrderBackend , f, x)
165- if x isa Tuple
166- # only support computation of Hessian for functions with single input argument
167- x = only (x)
168- end
169-
170- value = f (x)
171- hess = jacobian (second_lowest (ab), (_x,) -> begin
172- g = gradient (lowest (ab), f, _x)
173- return g[1 ] # gradient returns a tuple
174- end , x)
175-
176- return value, hess
177- end
178-
179164"""
180165 AD.value_gradient_and_hessian(ab::AD.AbstractBackend, f, x)
181166
@@ -200,23 +185,6 @@ function value_gradient_and_hessian(ab::AbstractBackend, f, x)
200185 return value, (grads,), hess
201186end
202187
203- function value_gradient_and_hessian (ab:: HigherOrderBackend , f, x)
204- if x isa Tuple
205- # only support computation of Hessian for functions with single input argument
206- x = only (x)
207- end
208-
209- value = f (x)
210- grads, hess = value_and_jacobian (
211- second_lowest (ab), _x -> begin
212- g = gradient (lowest (ab), f, _x)
213- return g[1 ] # gradient returns a tuple
214- end , x
215- )
216-
217- return value, (grads,), hess
218- end
219-
220188"""
221189 AD.pushforward_function(ab::AD.AbstractBackend, f, xs...)
222190
0 commit comments