@@ -42,6 +42,7 @@ julia> res = SimResult(plant, U_data, Y_data)
4242Simulation results of LinModel with 5 time steps.
4343
4444julia> using Plots; plot(res)
45+
4546```
4647"""
4748function SimResult (
@@ -83,7 +84,7 @@ get_nx̂(mpc::PredictiveController) = mpc.estim.nx̂
8384
8485function Base. show (io:: IO , res:: SimResult )
8586 N = length (res. T_data)
86- print (io, " Simulation results of $(typeof (res. obj)) with $N time steps." )
87+ print (io, " Simulation results of $(typeof (res. obj). name . name ) with $N time steps." )
8788end
8889
8990
@@ -102,7 +103,8 @@ on them (see Examples below). Note that the method mutates `plant` internal stat
102103```julia-repl
103104julia> plant = NonLinModel((x,u,d)->0.1x+u+d, (x,_)->2x, 10.0, 1, 1, 1, 1);
104105
105- julia> res = sim!(plant, 15, [0], [0], x0=[1]);
106+ julia> res = sim!(plant, 15, [0], [0], x0=[1])
107+ Simulation results of NonLinModel with 15 time steps.
106108
107109julia> using Plots; plot(res, plotu=false, plotd=false, plotx=true)
108110
@@ -169,9 +171,10 @@ vectors. The simulated sensor and process noises of `plant` are specified by `y_
169171```julia-repl
170172julia> model = LinModel(tf(3, [30, 1]), 0.5);
171173
172- julia> estim = KalmanFilter(model, σR=[0.5], σQ=[0.25], σQ_int =[0.01], σP0_int =[0.1]);
174+ julia> estim = KalmanFilter(model, σR=[0.5], σQ=[0.25], σQint_ym =[0.01], σP0int_ym =[0.1]);
173175
174- julia> res = sim!(estim, 50, [0], y_noise=[0.5], x_noise=[0.25], x0=[-10], x̂0=[0, 0]);
176+ julia> res = sim!(estim, 50, [0], y_noise=[0.5], x_noise=[0.25], x0=[-10], x̂0=[0, 0])
177+ Simulation results of KalmanFilter with 50 time steps.
175178
176179julia> using Plots; plot(res, plotŷ=true, plotu=false, plotxwithx̂=true)
177180
@@ -208,7 +211,8 @@ julia> model = LinModel([tf(3, [30, 1]); tf(2, [5, 1])], 4);
208211
209212julia> mpc = setconstraint!(LinMPC(model, Mwt=[0, 1], Nwt=[0.01], Hp=30), ymin=[0, -Inf]);
210213
211- julia> res = sim!(mpc, 25, [0, 0], y_noise=[0.1], y_step=[-10, 0]);
214+ julia> res = sim!(mpc, 25, [0, 0], y_noise=[0.1], y_step=[-10, 0])
215+ Simulation results of LinMPC with 25 time steps.
212216
213217julia> using Plots; plot(res, plotry=true, plotŷ=true, plotymin=true, plotu=true)
214218
0 commit comments