@@ -51,22 +51,22 @@ import MultivariateOrthogonalPolynomials: tri_forwardrecurrence, grid, TriangleR
5151 @testset " function" begin
5252 P = JacobiTriangle ()
5353 𝐱 = SVector (0.1 ,0.2 )
54- c = PseudoBlockVector ([1 ; Zeros (∞)], (axes (P,2 ),))
54+ c = BlockedVector ([1 ; Zeros (∞)], (axes (P,2 ),))
5555 f = P* c
5656 @test MemoryLayout (f) isa ExpansionLayout
5757 @test @inferred (f[𝐱]) == 1.0
58- c = PseudoBlockVector ([1 : 3 ; Zeros (∞)], (axes (P,2 ),))
58+ c = BlockedVector ([1 : 3 ; Zeros (∞)], (axes (P,2 ),))
5959 f = P* c
6060 @test f[𝐱] ≈ P[𝐱,1 : 3 ]' * (1 : 3 )
61- c = PseudoBlockVector ([1 : 6 ; Zeros (∞)], (axes (P,2 ),))
61+ c = BlockedVector ([1 : 6 ; Zeros (∞)], (axes (P,2 ),))
6262 f = P* c
6363 @test f[𝐱] ≈ P[𝐱,1 : 6 ]' * (1 : 6 )
6464
65- c = PseudoBlockVector ([randn (5050 ); Zeros (∞)], (axes (P,2 ),))
65+ c = BlockedVector ([randn (5050 ); Zeros (∞)], (axes (P,2 ),))
6666 f = P* c
6767 @test f[𝐱] ≈ P[𝐱,1 : 5050 ]' * c[1 : 5050 ]
6868
69- c = PseudoBlockVector ([1 : 10 ; zeros (∞)], (axes (P,2 ),))
69+ c = BlockedVector ([1 : 10 ; zeros (∞)], (axes (P,2 ),))
7070 f = P* c
7171 𝐱 = SVector (0.1 ,0.2 )
7272 @test f[𝐱] ≈ dot (P[𝐱,1 : 10 ],1 : 10 )
@@ -98,7 +98,7 @@ import MultivariateOrthogonalPolynomials: tri_forwardrecurrence, grid, TriangleR
9898
9999 @testset " relation with transform" begin
100100 P = JacobiTriangle ()
101- c = PseudoBlockVector ([1 : 10 ; zeros (∞)], (axes (P,2 ),))
101+ c = BlockedVector ([1 : 10 ; zeros (∞)], (axes (P,2 ),))
102102 f = P* c
103103 N = 5
104104 P_N = P[:,Block .(Base. OneTo (N))]
@@ -375,7 +375,7 @@ import MultivariateOrthogonalPolynomials: tri_forwardrecurrence, grid, TriangleR
375375 X = P \ (x .* P)
376376 Y = P \ (y .* P)
377377
378- P_ex = PseudoBlockVector {Float64} (undef, 1 : 5 )
378+ P_ex = BlockedVector {Float64} (undef, 1 : 5 )
379379 for n = 0 : 4 , k= 0 : n
380380 P_ex[Block (n+ 1 )[k+ 1 ]] = p (n,k,1 ,0 ,0 ,0.1 ,0.2 )
381381 end
0 commit comments