We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 6a67286 commit cd41a88Copy full SHA for cd41a88
examples/annulus.jl
@@ -3,8 +3,8 @@
3
# ```math
4
# f(x,y) = \frac{x^3}{x^2+y^2-\frac{1}{4}},
5
# ```
6
-# over the annulus defined by $\{(r,\theta) : \frac{2}{3} < r < 1, 0 < \theta < 2\pi\}$.
7
-# We will calculate the integral:
+# over the annulus defined by $\{(r,\theta) : \rho < r < 1, 0 < \theta < 2\pi\}$
+# with parameter $\rho = \frac{2}{3}$. We will calculate the integral:
8
9
# \int_0^{2\pi}\int_{\frac{2}{3}}^1 f(r\cos\theta,r\sin\theta)^2r{\rm\,d}r{\rm\,d}\theta,
10
0 commit comments