@@ -28,40 +28,40 @@ ToeplitzHankelPlan(T::TriangularToeplitz,H::Hankel,D::AbstractVector,DL::Abstrac
2828
2929function partialchol (H:: Hankel )
3030 # Assumes positive definite
31- σ= eltype (H)[]
32- n= size (H,1 )
33- C= Vector{eltype (H)}[]
34- v= [H[:,1 ];vec (H[end ,2 : end ])]
35- d= diag (H)
31+ σ = eltype (H)[]
32+ n = size (H,1 )
33+ C = Vector{eltype (H)}[]
34+ v = [H[:,1 ]; vec (H[end ,2 : end ])]
35+ d = diag (H)
3636 @assert length (v) ≥ 2 n- 1
37- reltol= maximum (abs,d)* eps (eltype (H))* log (n)
37+ reltol = maximum (abs,d)* eps (eltype (H))* log (n)
3838 for k= 1 : n
39- mx,idx= findmax (d)
39+ mx,idx = findmax (d)
4040 if mx ≤ reltol break end
41- push! (σ,inv (mx))
42- push! (C,v[idx: n+ idx- 1 ])
41+ push! (σ, inv (mx))
42+ push! (C, v[idx: n+ idx- 1 ])
4343 for j= 1 : k- 1
4444 nCjidxσj = - C[j][idx]* σ[j]
4545 Base. axpy! (nCjidxσj, C[j], C[k])
4646 end
4747 @simd for p= 1 : n
48- @inbounds d[p]-= C[k][p]^ 2 / mx
48+ @inbounds d[p] -= C[k][p]^ 2 / mx
4949 end
5050 end
5151 for k= 1 : length (σ) scale! (C[k],sqrt (σ[k])) end
5252 C
5353end
5454
55- function partialchol (H:: Hankel ,D:: AbstractVector )
55+ function partialchol (H:: Hankel , D:: AbstractVector )
5656 # Assumes positive definite
5757 T = promote_type (eltype (H),eltype (D))
58- σ= T[]
59- n= size (H,1 )
60- C= Vector{T}[]
61- v= [H[:,1 ];vec (H[end ,2 : end ])]
62- d= diag (H).* D.^ 2
58+ σ = T[]
59+ n = size (H,1 )
60+ C = Vector{T}[]
61+ v = [H[:,1 ];vec (H[end ,2 : end ])]
62+ d = diag (H).* D.^ 2
6363 @assert length (v) ≥ 2 n- 1
64- reltol= maximum (abs,d)* eps (T)* log (n)
64+ reltol = maximum (abs,d)* eps (T)* log (n)
6565 for k= 1 : n
6666 mx,idx= findmax (d)
6767 if mx ≤ reltol break end
@@ -103,7 +103,7 @@ function leg2chebTH{S}(::Type{S},n)
103103 t = zeros (S,n)
104104 t[1 : 2 : end ] = λ[1 : 2 : n]
105105 T = TriangularToeplitz (2 t/ π,:U )
106- H = Hankel (λ[1 : n],λ[n: end ])
106+ H = Hankel (λ[1 : n], λ[n: end ])
107107 DL = ones (S,n)
108108 DL[1 ] /= 2
109109 T,H,DL
0 commit comments