@@ -103,15 +103,12 @@ end
103103
104104
105105stirlingremainder (z:: Number ,N:: Int ) = (1 + zeta (N))* gamma (N)/ ((2 π)^ (N+ 1 )* z^ N)/ stirlingseries (z)
106- stirlingremainder {T<:Number} (z:: AbstractVector{T} ,N:: Int ) = (1 + zeta (N))* gamma (N)/ (2 π)^ (N+ 1 ). / z.^ N./ stirlingseries (z)
107106
108107Aratio (n:: Int ,α:: Float64 ,β:: Float64 ) = exp ((n/ 2 + α+ 1 / 4 )* log1p (- β/ (n+ α+ β+ 1 ))+ (n/ 2 + β+ 1 / 4 )* log1p (- α/ (n+ α+ β+ 1 ))+ (n/ 2 + 1 / 4 )* log1p (α/ (n+ 1 ))+ (n/ 2 + 1 / 4 )* log1p (β/ (n+ 1 )))
109108Aratio (n:: Number ,α:: Number ,β:: Number ) = (1 + (α+ 1 )/ n)^ (n+ α+ 1 / 2 )* (1 + (β+ 1 )/ n)^ (n+ β+ 1 / 2 )/ (1 + (α+ β+ 1 )/ n)^ (n+ α+ β+ 1 / 2 )/ (1 + (zero (α)+ zero (β))/ n)^ (n+ 1 / 2 )
110- Aratio (n:: AbstractVector ,α:: Number ,β:: Number ) = [ Aratio (n[i],α,β) for i= 1 : length (n) ]
111109
112110Cratio (n:: Int ,α:: Float64 ,β:: Float64 ) = exp ((n+ α+ 1 / 2 )* log1p ((α- β)/ (2 n+ α+ β+ 2 ))+ (n+ β+ 1 / 2 )* log1p ((β- α)/ (2 n+ α+ β+ 2 ))- log1p ((α+ β+ 2 )/ 2 n)/ 2 )/ sqrt (n)
113111Cratio (n:: Number ,α:: Number ,β:: Number ) = n^ (- 1 / 2 )* (1 + (α+ 1 )/ n)^ (n+ α+ 1 / 2 )* (1 + (β+ 1 )/ n)^ (n+ β+ 1 / 2 )/ (1 + (α+ β+ 2 )/ 2 n)^ (2 n+ α+ β+ 3 / 2 )
114- Cratio (n:: AbstractVector ,α:: Number ,β:: Number ) = [ Cratio (n[i],α,β) for i= 1 : length (n) ]
115112
116113
117114Anαβ (n:: Number ,α:: Number ,β:: Number ) = 2 ^ (α+ β+ 1 )/ (2 n+ α+ β+ 1 )* exp (lgamma (n+ α+ 1 )- lgamma (n+ α+ β+ 1 )+ lgamma (n+ β+ 1 )- lgamma (n+ 1 ))
@@ -135,9 +132,6 @@ function Anαβ(n::Integer,α::Float64,β::Float64)
135132 end
136133end
137134
138- Anαβ {T<:Integer} (n:: AbstractVector{T} ,α:: Number ,β:: Number ) = [ Anαβ (n[i],α,β) for i= 1 : length (n) ]
139- Anαβ {T<:Integer} (n:: AbstractMatrix{T} ,α:: Number ,β:: Number ) = [ Anαβ (n[i,j],α,β) for i= 1 : size (n,1 ), j= 1 : size (n,2 ) ]
140-
141135
142136doc"""
143137The Lambda function ``\L ambda(z) = \f rac{\G amma(z+\f rac{1}{2})}{\G amma(z+1)}`` for the ratio of gamma functions.
@@ -168,7 +162,6 @@ function Λ(x::Float64,λ₁::Float64,λ₂::Float64)
168162 (x+ λ₂)/ (x+ λ₁)* Λ (x+ 1. ,λ₁,λ₂)
169163 end
170164end
171- Λ {T<:Number} (x:: AbstractArray{T} ,λ₁:: Number ,λ₂:: Number ) = promote_type (T,typeof (λ₁),typeof (λ₂))[ Λ (x[i],λ₁,λ₂) for i in eachindex (x) ]
172165
173166# # TODO : deprecate when Lambert-W is supported in a mainstream repository such as SpecialFunctions.jl
174167doc"""
@@ -210,9 +203,6 @@ function Cnλ{T<:Integer}(n::UnitRange{T},λ::Number)
210203 ret
211204end
212205
213- Cnλ {T<:Integer} (n:: AbstractVector{T} ,λ:: Number ) = [ Cnλ (n[i],λ) for i= 1 : length (n) ]
214- Cnλ {T<:Integer} (n:: AbstractMatrix{T} ,λ:: Number ) = [ Cnλ (n[i,j],λ) for i= 1 : size (n,1 ), j= 1 : size (n,2 ) ]
215-
216206function Cnmλ (n:: Integer ,m:: Integer ,λ:: Number )
217207 if m == 0
218208 Cnλ (n,λ)
@@ -221,8 +211,6 @@ function Cnmλ(n::Integer,m::Integer,λ::Number)
221211 end
222212end
223213
224- Cnmλ {T<:Integer} (n:: AbstractVector{T} ,m:: Integer ,λ:: Number ) = [ Cnmλ (n[i],m,λ) for i= 1 : length (n) ]
225-
226214
227215function Cnαβ (n:: Integer ,α:: Number ,β:: Number )
228216 if n== 0
@@ -244,9 +232,6 @@ function Cnαβ(n::Integer,α::Float64,β::Float64)
244232 end
245233end
246234
247- Cnαβ {T<:Integer} (n:: AbstractVector{T} ,α:: Number ,β:: Number ) = [ Cnαβ (n[i],α,β) for i= 1 : length (n) ]
248- Cnαβ {T<:Integer} (n:: AbstractMatrix{T} ,α:: Number ,β:: Number ) = [ Cnαβ (n[i,j],α,β) for i= 1 : size (n,1 ), j= 1 : size (n,2 ) ]
249-
250235function Cnmαβ (n:: Integer ,m:: Integer ,α:: Number ,β:: Number )
251236 if m == 0
252237 Cnαβ (n,α,β)
@@ -255,8 +240,6 @@ function Cnmαβ(n::Integer,m::Integer,α::Number,β::Number)
255240 end
256241end
257242
258- Cnmαβ {T<:Integer} (n:: AbstractVector{T} ,m:: Integer ,α:: Number ,β:: Number ) = [ Cnmαβ (n[i],m,α,β) for i= 1 : length (n) ]
259- Cnmαβ {T<:Integer} (n:: AbstractMatrix{T} ,m:: Integer ,α:: Number ,β:: Number ) = [ Cnmαβ (n[i,j],m,α,β) for i= 1 : size (n,1 ), j= 1 : size (n,2 ) ]
260243
261244function Cnmαβ {T<:Number} (n:: Integer ,m:: Integer ,α:: AbstractArray{T} ,β:: AbstractArray{T} )
262245 shp = promote_shape (size (α),size (β))
0 commit comments