@@ -35,11 +35,11 @@ using ApproxFunOrthogonalPolynomials: jacobip
3535 end
3636
3737 @testset " Normalized space" begin
38- for f in Any[ x -> 3 x^ 3 + 5 x^ 2 + 2 , x-> x, identity]
39- for dt in Any[( ), (0 .. 1 ,)] ,
40- S in Any[ Ultraspherical (1 , dt... ),
38+ for f in ( x -> 3 x^ 3 + 5 x^ 2 + 2 , x-> x, identity)
39+ for dt in (( ), (0 .. 1 ,)) ,
40+ S in ( Ultraspherical (1 , dt... ),
4141 Ultraspherical (0.5 ,dt... ),
42- Ultraspherical (3 , dt... )]
42+ Ultraspherical (3 , dt... ))
4343
4444 NS = NormalizedPolynomialSpace (S)
4545 fS = Fun (f, S)
@@ -63,16 +63,16 @@ using ApproxFunOrthogonalPolynomials: jacobip
6363 L = ultra2leg (ApproxFunBase. canonicalspace (U))
6464 NormalizedPolynomialSpace (L)
6565 end
66- @testset for T in Any[ Float32, Float64] , ET in Any[ T, complex (T)]
66+ @testset for T in ( Float32, Float64) , ET in ( T, complex (T))
6767 v = Array {ET} (undef, 10 )
6868 v2 = similar (v)
6969 M = Array {ET} (undef, 10 , 10 )
7070 M2 = similar (M)
7171 A = Array {ET} (undef, 10 , 10 , 10 )
7272 A2 = similar (A)
73- @testset for d in Any[( ), (0 .. 1 ,)] , order in Any[ 0.5 , 1 , 3 ]
73+ @testset for d in (( ), (0 .. 1 ,)) , order in ( 0.5 , 1 , 3 )
7474 U = Ultraspherical (order, d... )
75- Slist = Any[ U, NormalizedPolynomialSpace (U)]
75+ Slist = ( U, NormalizedPolynomialSpace (U))
7676 @testset for S in Slist
7777 if order == 0.5
7878 L = ultra2leg (S)
@@ -100,6 +100,7 @@ using ApproxFunOrthogonalPolynomials: jacobip
100100 test_transform! (A, A2, S)
101101 end
102102 end
103+ endend
103104 end
104105 end
105106
@@ -110,13 +111,13 @@ using ApproxFunOrthogonalPolynomials: jacobip
110111
111112 @testset " Evaluation" begin
112113 c = [i^ 2 for i in 1 : 4 ]
113- @testset for d in Any[ 0 .. 1 , ChebyshevInterval ()] , order in Any[ 1 , 2 , 0.5 ]
114- @testset for _sp in Any[ Ultraspherical (order), Ultraspherical (order,d)] ,
115- sp in Any[ _sp, NormalizedPolynomialSpace (_sp)]
114+ @testset for d in ( 0 .. 1 , ChebyshevInterval ()) , order in ( 1 , 2 , 0.5 )
115+ @testset for _sp in ( Ultraspherical (order), Ultraspherical (order,d)) ,
116+ sp in ( _sp, NormalizedPolynomialSpace (_sp))
116117 d = domain (sp)
117118 f = Fun (sp, c)
118- for ep in [ leftendpoint, rightendpoint] ,
119- ev in [ ApproxFunBase. ConcreteEvaluation, Evaluation]
119+ for ep in ( leftendpoint, rightendpoint) ,
120+ ev in ( ApproxFunBase. ConcreteEvaluation, Evaluation)
120121 E = @inferred ev (sp, ep, 0 )
121122 @test E[2 : 4 ] ≈ E[1 : 4 ][2 : end ]
122123 @test E[1 : 2 : 5 ] ≈ E[1 : 5 ][1 : 2 : 5 ]
0 commit comments