@@ -253,8 +253,8 @@ using ApproxFunOrthogonalPolynomials: forwardrecurrence
253253 end
254254
255255 @testset " Normalized space" begin
256- for f in Any[ x -> 3 x^ 3 + 5 x^ 2 + 2 , x-> x, identity]
257- for dt in Any[( ), (0 .. 1 ,)]
256+ for f in ( x -> 3 x^ 3 + 5 x^ 2 + 2 , x-> x, identity)
257+ for dt in (( ), (0 .. 1 ,))
258258 S = Chebyshev (dt... )
259259 NS = NormalizedPolynomialSpace (S)
260260
@@ -273,8 +273,16 @@ using ApproxFunOrthogonalPolynomials: forwardrecurrence
273273 s1 = NormalizedChebyshev (- 1 .. 1 )
274274 s2 = NormalizedChebyshev ()
275275 @test s1 == s2
276- D1 = Derivative (s1)
277- D2 = Derivative (s2)
276+ D1 = if VERSION >= v " 1.8"
277+ @inferred Derivative (s1)
278+ else
279+ Derivative (s1)
280+ end
281+ D2 = if VERSION >= v " 1.8"
282+ @inferred Derivative (s2)
283+ else
284+ Derivative (s2)
285+ end
278286 f = x -> 3 x^ 2 + 5 x
279287 f1 = Fun (f, s1)
280288 f2 = Fun (f, s2)
@@ -296,7 +304,7 @@ using ApproxFunOrthogonalPolynomials: forwardrecurrence
296304 end
297305
298306 @testset " Operator exponentiation" begin
299- for M in Any[ Multiplication (Fun (), Chebyshev ()), Multiplication (Fun ())]
307+ for M in ( Multiplication (Fun (), Chebyshev ()), Multiplication (Fun ()))
300308 N = @inferred (M -> M^ 0 )(M)
301309 @test N * Fun () == Fun ()
302310 N = @inferred (M -> M^ 1 )(M)
0 commit comments