|
| 1 | +[1mdiff --git a/Project.toml b/Project.toml[m |
| 2 | +[1mindex 17c63cb..a7d099d 100644[m |
| 3 | +[1m--- a/Project.toml[m |
| 4 | +[1m+++ b/Project.toml[m |
| 5 | +[36m@@ -1,7 +1,7 @@[m |
| 6 | + name = "MLJLinearModels"[m |
| 7 | + uuid = "6ee0df7b-362f-4a72-a706-9e79364fb692"[m |
| 8 | +[31m-authors = ["Thibaut Lienart <tlienart@me.com>"][m |
| 9 | + version = "0.10.1"[m |
| 10 | +[32m+[m[32mauthors = ["Thibaut Lienart <tlienart@me.com>"][m |
| 11 | + [m |
| 12 | + [deps][m |
| 13 | + DocStringExtensions = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"[m |
| 14 | +[36m@@ -13,10 +13,30 @@[m [mOptim = "429524aa-4258-5aef-a3af-852621145aeb"[m |
| 15 | + Parameters = "d96e819e-fc66-5662-9728-84c9c7592b0a"[m |
| 16 | + [m |
| 17 | + [compat][m |
| 18 | +[31m-DocStringExtensions = "0.8, 0.9"[m |
| 19 | +[31m-IterativeSolvers = "0.8, 0.9"[m |
| 20 | +[31m-LinearMaps = "2.6, 3.2"[m |
| 21 | +[31m-MLJModelInterface = "1.4"[m |
| 22 | +[31m-Optim = "0.20, 0.21, 1"[m |
| 23 | +[31m-Parameters = "0.12"[m |
| 24 | +[31m-julia = "1.6, 1"[m |
| 25 | +[32m+[m[32mDocStringExtensions = "0.9.5"[m |
| 26 | +[32m+[m[32mIterativeSolvers = "0.9.4"[m |
| 27 | +[32m+[m[32mLinearMaps = "3.11.4"[m |
| 28 | +[32m+[m[32mMLJModelInterface = "1.12.0"[m |
| 29 | +[32m+[m[32mOptim = "1.13.2"[m |
| 30 | +[32m+[m[32mParameters = "0.12.3"[m |
| 31 | +[32m+[m[32mjulia = "1.10"[m |
| 32 | +[32m+[m |
| 33 | +[32m+[m[32m[extras][m |
| 34 | +[32m+[m[32mCSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"[m |
| 35 | +[32m+[m[32mDataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"[m |
| 36 | +[32m+[m[32mDelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab"[m |
| 37 | +[32m+[m[32mDownloads = "f43a241f-c20a-4ad4-852c-f6b1247861c6"[m |
| 38 | +[32m+[m[32mForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"[m |
| 39 | +[32m+[m[32mLinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"[m |
| 40 | +[32m+[m[32mMLJ = "add582a8-e3ab-11e8-2d5e-e98b27df1bc7"[m |
| 41 | +[32m+[m[32mMLJBase = "a7f614a8-145f-11e9-1d2a-a57a1082229d"[m |
| 42 | +[32m+[m[32mOptim = "429524aa-4258-5aef-a3af-852621145aeb"[m |
| 43 | +[32m+[m[32mPyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"[m |
| 44 | +[32m+[m[32mRCall = "6f49c342-dc21-5d91-9882-a32aef131414"[m |
| 45 | +[32m+[m[32mRDatasets = "ce6b1742-4840-55fa-b093-852dadbb1d8b"[m |
| 46 | +[32m+[m[32mRandom = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"[m |
| 47 | +[32m+[m[32mStableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"[m |
| 48 | +[32m+[m[32mTest = "8dfed614-e22c-5e08-85e1-65c5234f0b40"[m |
| 49 | +[32m+[m |
| 50 | +[32m+[m[32m[targets][m |
| 51 | +[32m+[m[32mtest = ["CSV", "DataFrames", "DelimitedFiles", "Downloads", "ForwardDiff", "LinearAlgebra", "MLJ", "MLJBase", "Optim", "PyCall", "RCall", "RDatasets", "Random", "StableRNGs", "Test"][m |
| 52 | +[1mdiff --git a/test/Project.toml b/test/Project.toml[m |
| 53 | +[1mindex ac1e430..498be2e 100644[m |
| 54 | +[1m--- a/test/Project.toml[m |
| 55 | +[1m+++ b/test/Project.toml[m |
| 56 | +[36m@@ -14,13 +14,3 @@[m [mRDatasets = "ce6b1742-4840-55fa-b093-852dadbb1d8b"[m |
| 57 | + Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"[m |
| 58 | + StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"[m |
| 59 | + Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"[m |
| 60 | +[31m-[m |
| 61 | +[31m-[compat][m |
| 62 | +[31m-DataFrames = "1.4"[m |
| 63 | +[31m-ForwardDiff = "0.10"[m |
| 64 | +[31m-MLJ = "0.19"[m |
| 65 | +[31m-MLJBase = "0.21"[m |
| 66 | +[31m-PyCall = "1.95"[m |
| 67 | +[31m-RCall = "0.13"[m |
| 68 | +[31m-RDatasets = "0.7"[m |
| 69 | +[31m-StableRNGs = "1.0"[m |
| 70 | +[1mdiff --git a/test/interface/fitpredict.jl b/test/interface/fitpredict.jl[m |
| 71 | +[1mindex 3e15c55..8687d8f 100644[m |
| 72 | +[1m--- a/test/interface/fitpredict.jl[m |
| 73 | +[1m+++ b/test/interface/fitpredict.jl[m |
| 74 | +[36m@@ -37,7 +37,7 @@[m [mend[m |
| 75 | + ŷ = MLJBase.predict(lr, fr, Xt)[m |
| 76 | + ŷ = MLJBase.mode.(ŷ)[m |
| 77 | + [m |
| 78 | +[31m- mcr = MLJBase.misclassification_rate(ŷ, yc)[m |
| 79 | +[32m+[m[32m mcr = MLJ.misclassification_rate(ŷ, yc)[m |
| 80 | + @test mcr ≤ 0.2[m |
| 81 | + end[m |
| 82 | + [m |
| 83 | +[36m@@ -62,7 +62,7 @@[m [mend[m |
| 84 | + ŷ = MLJBase.predict(mc, fr, Xt)[m |
| 85 | + ŷ = MLJBase.mode.(ŷ)[m |
| 86 | + [m |
| 87 | +[31m- mcr = MLJBase.misclassification_rate(ŷ, yc)[m |
| 88 | +[32m+[m[32m mcr = MLJ.misclassification_rate(ŷ, yc)[m |
| 89 | + @test mcr ≤ 0.3[m |
| 90 | + end[m |
| 91 | + [m |
0 commit comments